Skip to main content
Log in

Kinetic Studies on the Thermal Dehydration and Degradation of Chitosan and Citralidene Chitosan

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The thermal dehydration and degradation of chitosan and citralidene chitosan was studied by differential scanning calorimetry at four different heating rates; 5, 10, 15 and 20 K min−1. The kinetics of thermal dehydration and degradation of chitosan and citralidene chitosan was investigated using different isoconversional and maximum rate (peak) methods viz. Kissinger–Akahira–Sunose (KAS), Tang, Starink1.95, Starink1.92, Flynn–Wall–Ozawa (FWO) and Bosewell. The activation energy values of thermal dehydration and degradation reactions obtained from isoconversional methods of FWO and Bosewell are slightly higher than that obtained from other methods. The variation of activation energy, E α with conversion function, α, established using these different methods were found to be similar. Compared to the FWO method, the KAS method offers a significant improvement in the accuracy of the E a values. All the maximum rate (peak) methods yielded consistent values of E α for the dehydration and degradation reactions of both chitosan and CIT-chitosan

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muzzarelli RAA (1973) Natural chelating polymers. Pergamon Press, Oxford, p 254

    Google Scholar 

  2. Amit B, Milka S (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Interface Sci 152:26–38

    Article  Google Scholar 

  3. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  4. Wu F, Tseng R, Juang R (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manage 91:798–806

    Article  CAS  Google Scholar 

  5. Wang FY, Wang H, Ma JW (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. J Hazard Mater 177:300–306

    Article  CAS  Google Scholar 

  6. Kittur FS, Harish PKV, Sankar KU, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 49:185–193

    Article  CAS  Google Scholar 

  7. Peniche C, Carlos E, Roman JS (1998) Interpolymer complexes of chitosan and polymethacrylic derivatives of salicylic acid: preparation, characterization and modification by thermal treatment. Polymer 39:6549–6554

    Article  CAS  Google Scholar 

  8. Velyana G, Dilyana Z, Lyubomir V (2012) Non-isothermal kinetics of thermal degradation of chitosan. Chem Central J 6:81–91

    Article  Google Scholar 

  9. de Douglas B (2007) Sergio Paulo C. Kinetics of the thermal degradation of chitosan. Thermochim Acta 465:73–82

    Article  Google Scholar 

  10. Shen-Kun L, Chi-Chih H, Ming-Fung L (2004) A kinetic study of thermal degradations of chitosan/polycaprolactam blends. Macromol Res 12:466–473

    Article  Google Scholar 

  11. Tirkistani FAA (1998) Thermal analysis of some chitosan schiff bases. Polym Degrad Stab 60:67–70

    Article  CAS  Google Scholar 

  12. Ikejima T, Yogi K, Inonu Y (1999) Thermal properties and crystallization behavior of poly(3-hydroxybutyric acid) in blends with chitin and chitosan. Macromol Chem Phys 200:413–421

    Article  CAS  Google Scholar 

  13. Chun-Yan O, Chao-Hua Z, Si-Dong L, Lei Y, Jing-Jing D, Xue-Liu M, Mu-Ting Z (2010) Thermal degradation kinetics of chitosan-cobalt complex as studied by thermogravi-metric analysis. Carbohydr Polym 82:1284–1289

    Article  Google Scholar 

  14. Si-Dong Li, Chao-Hua Z, Jing-Jing D, Chun-Yan O, Wei-Yan Q, Lei Y, Xiao-Dong S (2010) Effect of cupric ion on thermal degradation of quaternized chitosan. Carbohydr Polym 81:182–187

    Article  Google Scholar 

  15. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  16. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2000) A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 81:253–262

    Article  Google Scholar 

  17. Atanassov A, Genieva S, Vlaev L (2010) Study of the thermooxidative degradation kinetics of tetrafluoroethylene-ethylene copolymer filled with rice husks ash. Polym Plast Technol Eng 49:541–554

    Article  CAS  Google Scholar 

  18. Boonchom B, Puttawong S (2010) Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Phys B 405:2350–2355

    Article  CAS  Google Scholar 

  19. Boonchom B, Thongkam M (2010) Kinetics and thermodynamics of the formation of MnFeP4O12. J Chem Eng Data 55:211–216

    Article  CAS  Google Scholar 

  20. He W, Deng F, Liao G-X, Lin W, Jiang Y-Y, Jian X-G (2010) Kinetics of thermal degradation of poly(aryl ether) containing phthalazinone and life estimation. J Thermal Anal Calorim 100:1055–1062

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Sbirrazzuoli N (2002) Isoconversional analysis of the non-isothermal crystallization of a polymer melt. Macromol Rapid Commun 23:766–770

    Article  CAS  Google Scholar 

  22. Vyazovkin S, Sbirrazzuoli N (2003) Estimating the activation energy for non-isothermal crystallization of polymer melts. J Therm Anal Calorim 72:681–686

    Article  CAS  Google Scholar 

  23. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176

    Article  CAS  Google Scholar 

  24. Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman-Lauritzen parameters (U* and Kg) from the overall rates of non-isothermal crystallization. Macromol Rapid Commun 25:733–738

    Article  CAS  Google Scholar 

  25. Khawam A, Flanagan DR (2005) Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Non-isothermal kinetic studies. Thermochim Acta 436:101–112

    Article  CAS  Google Scholar 

  26. Vyazovkin S (2006) Model-free kinetics, staying free of multiplying entities without necessity. J Therm Anal Calorim 83:45–51

    Article  CAS  Google Scholar 

  27. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532

    Article  CAS  Google Scholar 

  28. Starink MJ (2007) Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci 42:483–489

    Article  CAS  Google Scholar 

  29. Simon P (2004) Isoconversional methods. J Therm Anal Calorim 76:123–132

    Article  CAS  Google Scholar 

  30. Joraid AA, Abu-Sehly AA, El-Oyoun MA, Alamri SN (2008) Non-isothermal crystallization kinetics of amorphous Te51.3As45.7Cu3. Thermochim Acta 470:98–104

    Article  CAS  Google Scholar 

  31. Akahira T, Sunose T, Trans joint convention of four electrical Institutes, paper no. 246 (1969) Research report, Chiba Institute of Technology. Sci Technol 1971(16):22–31

    Google Scholar 

  32. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  33. Aboulkas A, El Harfi K, El Bouadili A, Benchanaa M, Mokhlisse A, Outzourit A (2007) Kinetics of co-pyrolysis of Tarfaya (Morocco) oil shale with high-density polyethylene. Oil Shale 24:15–33

    CAS  Google Scholar 

  34. Murray P, White J (1955) Kinetics of the thermal dehydration of clays IV. Thermal analysis of the clay minerals. Trans Br Ceram Soc 54:204–238

    CAS  Google Scholar 

  35. Tang W, Liu Y, Zhang H, Wang C (2003) New approximate formula for Arrhenius temperature integral. Thermochim Acta 408:39–43

    Article  CAS  Google Scholar 

  36. Starink MJ (1996) A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta 288:97–104

    Article  CAS  Google Scholar 

  37. Flynn J, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328

    Article  CAS  Google Scholar 

  38. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  39. Doyle C (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 5:285–292

    Article  CAS  Google Scholar 

  40. Boswell PG (1980) On the calculation of activation energies using a modified Kissinger method. J Therm Anal 18:353–358

    Article  CAS  Google Scholar 

  41. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 57:217–221

    Article  CAS  Google Scholar 

  42. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data-review. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  43. Rao CNR (1963) Chemical applications of infra red spectroscopy. Academic Press, New York, p 365

    Google Scholar 

  44. Starink MJ, Van Mourik P (1992) Cooling and heating rate dependence of precipitation in an Al–Cu alloy. Mater Sci Eng A 156:183–194

    Article  Google Scholar 

  45. Starink MJ (1997) On the applicability of isoconversion methods for obtaining the activation energy of reactions within a temperature dependent equilibrium state. J Mater Sci 32:6505–6512

    Article  CAS  Google Scholar 

  46. Jose´ ES, Dockala ER, Cavalheirob ETG (2005) Synthesis and characterization of schiff bases from chitosan and salicylaldehyde derivatives. Carbohydr Polym 60:277–282

    Article  Google Scholar 

  47. Jin X, Wang J, Bai J (2009) Synthesis and antimicrobial activity of the schiff base from chitosan and citral. Carbohydr Res 344:825–829

    Article  CAS  Google Scholar 

  48. Jiao TF, Zhou J, Zhou JX, Gao L, Xing YY, Li X (2011) Synthesis and characterization of chitosan-based schiff base compounds with aromatic substituent groups. Iran Polym J 20:123–136

    CAS  Google Scholar 

  49. Shah HV, Babb DA, Smith DW Jr (2000) Bergman cyclopolymerization kinetics of bis-ortho-diynylarenes to polynaphthalene networks. A comparison of calorimetric methods. Polymer 41:4415–4422

    Article  CAS  Google Scholar 

  50. Muraleedharan K, Kripa S (2014) DSC kinetics of the thermal decomposition of copper(II) oxalate by isoconversional and maximum rate (peak) methods. J Therm Anal Calorim 115:1969–1978

    Article  CAS  Google Scholar 

  51. Crini G, Badot P (2008) Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447

    Article  CAS  Google Scholar 

  52. Sashiwa H, Shigemasa Y (1999) Chemical modification of chitin and chitosan 2; preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins. Carbohydr Polym 39:127–138

    Article  CAS  Google Scholar 

  53. Guinesi LS, Cavalheiro ETG (2006) Influence of the degree of substitution in biopolymeric Schiff bases on the kinetic of thermal decomposition by non-isothermal procedure. Thermochim Acta 449:1–7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muraleedharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muraleedharan, K., Alikutty, P., Abdul Mujeeb, V.M. et al. Kinetic Studies on the Thermal Dehydration and Degradation of Chitosan and Citralidene Chitosan. J Polym Environ 23, 1–10 (2015). https://doi.org/10.1007/s10924-014-0665-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0665-8

Keywords

Navigation