Skip to main content
Log in

A Comparative Study Between Bio-composites Obtained with Opuntia ficus indica Cladodes and Flax Fibers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This work is aimed to study the suitability of the wooden backbone of Opuntia ficus indica cladodes as reinforcement for the production of bio-composites. The wooden backbone can be extracted from O. ficus indica cladodes, which constitute a very relevant agricultural scrap, and is characterized by a thick walled cellular structure. In view of its potential in poly-lactic acid (PLA) matrix bio-composite production, two different possible applications were examined. In the first alternative, the wooden backbone was used in replacement of flax fibers for the production of fully consolidated bio-composites. Results obtained have shown that, though being characterized by lower properties compared to those of flax fiber composites, the opuntia actually works as an efficient reinforcement for PLA/wood flour matrix, increasing the flexural strength and elongation at break. In the second alternative, the cellular structure was used for the production of a sandwich bio-composite with a PLA/wood flour skin. In this case, the very high interlaminar adhesion strength between the skin and the core was considered as an indication of the potentiality of this material for the production of high strength sandwich structures. As a confirmation of this, no interlaminar debonding was observed during short beam tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nabi Saheb D, Jog JP (1999) Adv Polym Technol 18(4):351–363

    Google Scholar 

  2. Gowda TM, Naidu ACB, Chhaya R (1999) Compos Part A-Appl S 30:277–284

    Article  Google Scholar 

  3. Maffezzoli A, Calò E, Zurlo S, Mele G, Tarzia A, Stifani C (2004) Compos Sci Technol 64:839–845

    Article  CAS  Google Scholar 

  4. Campaner P, D’Amico D, Ferri P, Longo L, Maffezzoli A, Stifani C, Tarzia A (2010) Macromole Symp 296:526–530

    Article  CAS  Google Scholar 

  5. Li Y, Mai YW, Ye L (2000) Compos Sci Technol 60:2037–2055

    Article  CAS  Google Scholar 

  6. Nunez AJ, Aranguren MI, Berglund LA (2006) J Appl Polym Sci 101:1982–1987

    Article  CAS  Google Scholar 

  7. Okubo K, Fujii T, Yamamoto Y (2004) Compos Part A-Appl S 35:377–383

    Article  Google Scholar 

  8. Joseph S, Sreekala MS, Oommen Z, Koshyc P, Thomas S (2002) Compos Sci Technol 62:1857–1868

    Article  CAS  Google Scholar 

  9. Esmeraldo MA, Barreto AC, Freitas JEB, Fechine PBA, Sombra ASB, Corradini E, Mele G, Maffezzoli A, Mazzetto SE (2010) BioResour 5(4):2478–2501

    Google Scholar 

  10. Mehta G, Drzal LT, Mohanty AK, Misra M (2010) J Appl Polym Sci 99:1055–1068

    Article  Google Scholar 

  11. Lee SH, Wang S (2006) Compos Part A-Appl S 37:80–91

    Article  CAS  Google Scholar 

  12. Dweib MA, Hu B, O’Donnell A, Shenton HW, Wool RP (2004) Compos Struct 63:147–157

    Article  Google Scholar 

  13. Osei-Antwi M, de Castro J, Vassilopoulos AP, Keller T (2013) Constr Build Mater 41:231–238

    Article  Google Scholar 

  14. Sadler RL, Sharpe M, Panduranga R, Shivakumar K (2009) Compos Struct 90:330–336

    Article  Google Scholar 

  15. Kepler JA (2011) Compos Sci Technol 71:46–51

    Article  CAS  Google Scholar 

  16. Saenz C (2000) J Arid Environ 46:209–225

    Article  Google Scholar 

  17. Malaininea ME, Dufresne A, Dupeyre D, Mahrouza M, Vuonga R, Vignon MR (2003) Carbohyd Polym 51:77–83

    Article  Google Scholar 

  18. Malainine ME, Mahrouz M, Dufresne A (2004) Macromol Mater Eng 289:855–863

    Article  CAS  Google Scholar 

  19. Colajanni S, De Vecchi A, Fiore V, Lanza Volpe A, Valenza A (2010) Materiale isolante a base di cactacee, pannello realizzato con detto materiale e relativo processo di produzione, Italian patent IT2010RM00355 20100630

  20. Albamonte F (2008) Realizzazione di pannelli isolanti termico-acustici per l’edilizia a base di legno di opunzia, Italian Patent IT2008PA00023 20081016

  21. Liu X, Zou Y, Li W, Cao G, Chen W (2006) Polym Degr Stab 91:3259–3265

    Article  CAS  Google Scholar 

  22. Gibson LJ, Ashby MF (1997) Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge

    Google Scholar 

  23. Greco A, Lionetto F (2009) Polym Eng Sci 49(6):1142–1150

    Article  CAS  Google Scholar 

  24. Salomi A, Greco A, Pacifico T, Rametta R, Maffezzoli A (2011) Adv Polym Tech. doi: 10.1002/adv.20267

  25. Gere JM, Timoshenko SP (1997) Mechanics of Materials, PWS Publishing Company, Boston. Hibbeler, R.C

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Greco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, A., Gennaro, R., Timo, A. et al. A Comparative Study Between Bio-composites Obtained with Opuntia ficus indica Cladodes and Flax Fibers. J Polym Environ 21, 910–916 (2013). https://doi.org/10.1007/s10924-013-0595-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0595-x

Keywords

Navigation