Skip to main content

Advertisement

Log in

Development of Novel Non-woven Triumfetta cordifolia Bast Fibers and Polylactide Fibers Biocomposites

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study focuses on the development of needle-punched nonwoven composites reinforced with a Triumfetta cordifolia (TC) bast fiber based on a polylactide (PLA) matrix. Flax and hemp fibers, already known for their use in automotive applications, are used as a reference for comparison purposes. TC bast fibers from the equatorial region of Cameroon were extracted by a water retting process. Nonwoven felts were obtained by mixing TC fibers with PLA (50:50 weight ratio) through carding-napping process. The composite materials were obtained by thermocompression of the nonwoven felts with two thickness ranges (2 and 3 mm). The results obtained in tensile and flexural tests showed that composite materials with an optimal thickness of 2 mm displayed better mechanical performances. The anisotropy of the mechanical properties in traction and flexion of these composites was highlighted. It was found that the tensile and flexural mechanical properties in the transverse direction are always superior to those in the machine direction. Compared to flax or hemp nonwoven-reinforced biocomposites, TC fibers-based nonwoven biocomposites showed slightly lower maximum tensile and flexural stiffness values of 2882.7 MPa and 3908.6 MPa respectively. Thermogravimetric analysis revealed that the addition of the plant fibers increased the thermal stability of PLA and the ash content to 8%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Lee, B.-H., Kim, H.-S., Lee, S., Kim, H.-J., Dorgan, J.R.: Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos. Sci. Technol. 69(15–16), 2573–2579 (2009). https://doi.org/10.1016/j.compscitech.2009.07.015

    Article  Google Scholar 

  2. Alves, C., Ferrão, P.M.C., Silva, A.J., Reis, L.G., Freitas, M., Rodrigues, L.B., Alves, D.E.: Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 18(4), 313–327 (2010). https://doi.org/10.1016/j.jclepro.2009.10.022

    Article  Google Scholar 

  3. Merotte, A., Le, D., Bourmaud, A., Behlouli, K., Baley, C.: Mechanical and acoustic behaviour of porosity controlled randomly dispersed flax/PP biocomposite. Polym. Test. 51, 174–180 (2016). https://doi.org/10.1016/j.polymertesting.2016.03.002

    Article  Google Scholar 

  4. Carus, M., Partanen, A.: Bioverbundwerkstoffe: naturfaserverstärkte kunststoffe (NFK) und holz-polymer-werkstoff (WPC) [Biocomposites: natural fiber reinforced (NFK) and wood-polymer materials (WPC)], fachagentur nachwachsende Rohstoffe e.V. Gülzow-Prüzen, Germany (2017)

    Google Scholar 

  5. Ishikawa, T., Amaoka, K., Masubuchi, Y., Yamamoto, T., Yamanaka, A., Arai, M., Takahashi, J.: Overview of automotive structural composites technology developments in Japan. Compos. Sci. Technol. 155, 221–246 (2018)

    Article  Google Scholar 

  6. Hadiji, H., Assarar, M., Zouari, W., Pierre, F., Behlouli, K., Zouari, B., Ayad, R.: Damping analysis of nonwoven natural fibre-reinforced polypropylene composites used in automotive interior parts. Polym. Test. 89, 106692 (2020). https://doi.org/10.1016/j.polymertesting.2020.106692

    Article  Google Scholar 

  7. Elseify, L.A., Midani, M., El-Badawy, A.A., Seyam, A.F.M., Jawaid, M.: Benchmarking automotive nonwoven composites from date palm midrib and spadix fibers in comparison to commercial leaf fibers. Biomass Convers. Biorefinery (2023). https://doi.org/10.1007/s13399-023-03910-w

    Article  Google Scholar 

  8. Segovia, C., Sauget, A., Besserer, A., Kueny, R., Pizzi, A.: Evaluating mold growth in tannin-resin and flax fiber biocomposites. Ind. Crops Prod. 83, 438–443 (2016). https://doi.org/10.1016/j.indcrop.2015.12.088

    Article  Google Scholar 

  9. Komal, U.K., Lila, M.K., Singh, I.: PLA/banana fiber based sustainable biocomposites: a manufacturing perspective. Compos. Part B: Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.107535

    Article  Google Scholar 

  10. Manaii, R., Terekhina, S., Guillaumat, L., Duriatti, D.: Durabilité des bio-composites à matrice thermoplastique. In: 21ème Journées Nationales sur les Composites. (2019), July

  11. Jawaid, M., Asim, M., Tahir, P.M., Nasir, M.: Pineapple leaf fibers. Green Energy Technol. (2020). https://doi.org/10.1007/978-981-15-1416-6

    Article  Google Scholar 

  12. Ndengue, M.J., Ayissi, M.Z., Noah, P.M.A., Ebanda, F.B., Ateba, A.: Implementation and evaluation of certain properties of a polymer matrix composite material reinforced by fibrous residues of Saccharum officinarum in view of an applicability orientation. J. Miner. Mater. Charact. Eng. 9(02), 206 (2021). https://doi.org/10.4236/jmmce.2021.92015

    Article  Google Scholar 

  13. Elseify, L.A., Midani, M., El-Badawy, A., Jawaid, M.: Natural fibers in the automotive industry. In: Manufacturing automotive components from sustainable natural fiber composites, pp. 1–10. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-83025-0_1

    Chapter  Google Scholar 

  14. Senwitz, C., Kempe, A., Neinhuis, C., Mandombe, J.L., Branquima, M.F., Lautenschläger, T.: Almost forgotten resources–biomechanical properties of traditionally used bast fibers from Northern Angola. BioResources 11(3), 7595–7607 (2016)

    Article  Google Scholar 

  15. Mewoli, A., Segovia, C., Ebanda, F., Ateba, A., Noah, P., Ndiwe, B., Njom, A.: Physical-chemical and mechanical characterization of the Bast fibers of Triumfetta cordifolia A. Rich. from the equatorial region of cameroon. J. Miner. Mater. Charact. Eng. 8, 163–176 (2020). https://doi.org/10.4236/jmmce.2020.84011

    Article  Google Scholar 

  16. Grosser, P., Siegel, C., Neinhuis, C., Lautenschlaeger, T.: Triumfetta cordifolia: a valuable (African) source for biocomposites. BioResources 13(4), 7671–7682 (2018)

    Article  Google Scholar 

  17. Njom, A.E., Mewoli, A., Ndengue, M.J., Ebanda, F.B., Nitidem, A.D., Otiti, S.B., Ateba, A.: Hybrid composite based on natural rubber reinforced with short fibers of the Triumfetta cordifolia/Saccharum officinarum L.: performance evaluation. J. Miner. Mater. Charact. Eng. 10, 385–399 (2022). https://doi.org/10.4236/jmmce.2022.105027

    Article  Google Scholar 

  18. Behlouli, K., Mérotte, J., Le Bihan, J., Renouard, N., Kervoëlen, A., Fournet, M., Bourmaud, A.: Études des voies de revalorisation pour des Composites non tissés poly-(propylène)/fibre de Lin, p. 26. Revue des Composites et des Matériaux Avancés (2016)

  19. Renouard, N., Mérotte, J., Kervoëlen, A., Behlouli, K., Baley, C., Bourmaud, A.: Exploring two innovative recycling ways for poly-(propylene)-flax non wovens wastes. Polym. Degrad. Stab. 142, 89–101 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.05.031

    Article  Google Scholar 

  20. Baley, C., Gomina, M., Breard, J., Bourmaud, A., Drapier, S., Ferreira, M., Davies, P.: Specific features of flax fibres used to manufacture composite materials. Int. J. Mater. Form. 12(6), 1023–1052 (2019). https://doi.org/10.1007/s12289-018-1455-y

    Article  Google Scholar 

  21. Zhang, J., Khatibi, A.A., Castanet, E., Baum, T., Komeily-Nia, Z., Vroman, P., Wang, X.: Effect of natural fibre reinforcement on the sound and vibration damping properties of bio-biocomposites compression moulded by nonwoven mats. Biocompos. Commun. (2019). https://doi.org/10.1016/j.coco.2019.02.002

    Article  Google Scholar 

  22. Thilagavathi, G., Muthukumar, N., Krishnanan, N.S., Senthilram, T.: Development and characterization of pineapple fibre nonwovens for thermal and sound insulation applications. J. Nat. Fibers (2019). https://doi.org/10.1080/15440478.2019.1569575

    Article  Google Scholar 

  23. Chocinski-Arnault, L., Touchard, F., Martinez, G., Vroman, P., Vermeulen, B., Rault, F.: Biocomposites non tissés à fibres de lin: microstructure, comportement mécanique et endommagement. Comptes Rendus des JNC 18—ÉCOLE CENTRALE NANTES—12, 13, 14 Juin (2013)

  24. Alimuzzaman, S., Gong, R.H., Akonda, M.: Nonwoven polylactic acid and flax biocomposites. Polym. Biocompos. 34(10), 1611–1619 (2013). https://doi.org/10.1002/pc.22561

    Article  Google Scholar 

  25. Kandola, B.K., Mistik, S.I., Pornwannachai, W., Anand, S.C.: Natural fibre-reinforced thermoplastic biocomposites from woven-nonwoven textile preforms: mechanical and fire performance study. Biocompos. Part B: Eng. (2018). https://doi.org/10.1016/j.biocompositesb.2018.09.013

    Article  Google Scholar 

  26. Tse, B., Yu, X., Gong, H., Soutis, C.: Flexural properties of wet-laid hybrid nonwoven recycled carbon and flax fibre biocomposites in poly-lactic acid matrix. Aerospace 5(4), 120 (2018). https://doi.org/10.3390/aerospace5040120

    Article  Google Scholar 

  27. Gager, V., Le Duigou, A., Bourmaud, A., Pierre, F., Behlouli, K., Baley, C.: Understanding the effect of moisture variation on the hygromechanical properties of porosity-controlled nonwoven biocomposites. Polym. Test. 78, 105944 (2019). https://doi.org/10.1016/j.polymertesting.2019.105944

    Article  Google Scholar 

  28. Mewoli, A., Segovia, C., Soppie, A.G., Ebanda, F.B., Njom, A.E., Ateba, A., Brosse, N.: Investigation of the performance of needle-punched nonwoven fabrics using Triumfetta cordifolia and thermoplastic fibers, compared to other commercial bast fibers used in preformed biosourced composites. Heliyon 9(7), e17888 (2023). https://doi.org/10.1016/j.heliyon.2023.e17888

    Article  Google Scholar 

  29. Alimuzzaman, S.: Nonwoven flax fibre reinforced PLA biodegradable biocomposites (Doctoral dissertation, University of Manchester). (2014)

  30. Akonda, M., Alimuzzaman, S., Shah, D.U., Rahman, A.N.M.: Physico-mechanical, thermal and biodegradation performance of random flax/polylactic acid and unidirectional flax/polylactic acid biocomposites. Fibers 6(4), 98 (2018). https://doi.org/10.3390/fib6040098

    Article  Google Scholar 

  31. Martin, N.A.M.: Contribution à l’étude de paramètres influençant les propriétés mécaniques de fibres élémentaires de lin: Corrélation avec les propriétés de matériaux biocomposites (Doctoral dissertation, Université de Bretagne Sud). (2014)

  32. Gager, V., Duigou, A.L., Bourmaud, A., Pierre, F., Behlouli, K., Baley, C.: Influence of the nonwoven biocomposite’s microstructure on its hygromechanical behaviour. Revue Biocompos. Matér. Avancés 29, 215–224 (2019)

    Article  Google Scholar 

  33. Miao, M., Shan, M.: Highly aligned flax/polypropylene nonwoven preforms for thermoplastic composites. Compos. Sci. Technol. 71(15), 1713–1718 (2011)

    Article  Google Scholar 

  34. Tejyan, S.: Effect of erosive parameters on solid particle erosion of cotton fiber–based nonwoven mat/wooden dust reinforced hybrid polymer composites. J. Ind. Text. 51, 2514S-2532S (2022)

    Article  Google Scholar 

  35. Ornaghi Júnior, H.L., Zattera, A.J., Amico, S.C.: Thermal behavior and the compensation effect of vegetal fibers. Cellulose 21(1), 189–201 (2013). https://doi.org/10.1007/s10570-013-0126-x

    Article  Google Scholar 

  36. Legrand, N.B.R., Pierre, O., Fabien, B.E., Marcel, N.P., Jean, A.A.: Physico-chemical and thermal characterization of a lignocellulosic fiber, extracted from the bast of cola lepidota stem. J. Miner. Mater. Charact. Eng. 8(5), 377–392 (2020). https://doi.org/10.4236/jmmce.2020.85024

    Article  Google Scholar 

  37. Teixeira, F.P., Gomes, O.D.F.M., de Andrade Silva, F.: Degradation mechanisms of curaua, hemp, and sisal fibers exposed to elevated temperatures. BioResources 14, 1494–1511 (2019)

    Article  Google Scholar 

  38. Ketata, N., Seantier, B., Guermazi, N., Grohens, Y.: On the development of a green composites based on poly (lactic acid)/poly (butylene succinate) blend matrix reinforced by long flax fibers. Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.10.493

    Article  Google Scholar 

  39. Hallila, T., Maijala, P., Vuorinen, J., Viikari, L.: Enzymatic pretreatment of seed flax-and polylactide-commingled nonwovens for composite processing. J. Thermoplast. Compos. Mater. 27(10), 1387–1398 (2014)

    Article  Google Scholar 

  40. Öztürk, S.: The investigation of polylactic acid based natural fiber reinforced biocomposites for automotive applications. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi 6(1), 21–31 (2020)

    Article  Google Scholar 

  41. FlexForm: FlexForm technologies: the leader in natural fiber composites (2013)

Download references

Acknowledgements

The authors would like to thank Dr. Floran Pierre of EcoTechnilin SAS, F-76190, Valliquerville, France for his contribution to the fabrication of the nonwoven composite by thermocompression.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AM: Conceptualization, collection raw material (Triumfetta cordifolia fibers), Methodology investigation, Formal analysis, Bibliographic research and writing. CS: Conceptualization, Project administration, Procurement of raw material, Supervision, Review and editing. FBE: Conceptualization, Project administration, Supervision, Reading of the manuscript and validation; AA: Conceptualization, Project administration, Supervision and validation. PG: Thermal testing methodology and formal analysis; NB: Conceptualization, Project administration, Supervision, Reading of final manuscript and validation.

Corresponding author

Correspondence to Armel Mewoli.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that might appear to influence the work reported in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mewoli, A., Segovia, C., Ebanda, F.B. et al. Development of Novel Non-woven Triumfetta cordifolia Bast Fibers and Polylactide Fibers Biocomposites. Waste Biomass Valor 15, 3109–3121 (2024). https://doi.org/10.1007/s12649-023-02371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02371-6

Keywords

Navigation