Skip to main content
Log in

Film-Forming Starch Composites for Agricultural Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradable polymer composites were prepared from starch, crude glycerol, rapeseed cake and urea. The uniform films of the composites were prepared by casting technique. Mechanical properties and solubility in water of the films were studied. Increase of the content of rapeseed cake in the composites lead to the decrease of tensile strength and to the increase of elongation at break. The solubility of the composites in water increased with the increase of the content of rapeseed cake and urea. The changes of pH of soil being in the contact with the composite films were studied. It was established that the composites with the ratio of starch, rapeseed cake, crude glycerol and urea ranging from 4:6:3:0.2 to 4:6:3:1 can be used for the production of disposable plant pots. Too high content of urea can increase pH of soil up to the limit dangerous for plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Appl Catal Gen 281:225

    Article  CAS  Google Scholar 

  2. Egües I, González Alriols M, Herseczki Z, Marton G, Labidi J (2010) J Ind Eng Chem 16:293

    Article  Google Scholar 

  3. Bowker M, Davies PR, Al-Mazroai LS (2009) Catal Lett 128:253

    Article  CAS  Google Scholar 

  4. Moon C, Ahn JH, Kim SW, Sang BI, Um Y (2010) Appl Biochem Biotechnol 161:502

    Article  CAS  Google Scholar 

  5. Németh A, Sevella B (2008) Appl Biochem Biotechnol 144:47–58

    Article  Google Scholar 

  6. Rymowicz W, Rywinska A, Gladkowski W (2008) Chem Pap 62:239

    Article  CAS  Google Scholar 

  7. Schone F, Rudolph B, Kirchheim U, Knapp G (1997) Br J Nutr 78:947

    Article  CAS  Google Scholar 

  8. Wathelet J-P, Wagstaffe PJ, Biston R, Marlier M, Severin M (1988) Fresenius J Anal Chem 332:689

    Article  CAS  Google Scholar 

  9. Maljanen M, Sigurdsson BD, Guðmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Biogeosci 7:2711

    Article  CAS  Google Scholar 

  10. Verhoeven JTA, Setter TL (2010) Ann Bot 105:155

    Article  Google Scholar 

  11. Kumar R, Choudhary V, Mishra S, Varma I (2008) Front Chem Chin 3:243

    Article  Google Scholar 

  12. Ma X, Yu J, Kenedy JF (2005) Carbohydr Polym 62:19

    Article  CAS  Google Scholar 

  13. Nourbakhsh A, Ashori A (2010) Bioresour Technol 101:2525

    Article  CAS  Google Scholar 

  14. Haque M, Mahbub Hasan M, Islam S, Ali S (2009) Bioresour Technol 100:4903

    Article  CAS  Google Scholar 

  15. Liu H, Wu Q, Zhang Q (2009) Bioresour Technol 100:6088

    Article  CAS  Google Scholar 

  16. Chang PR, Jian R, Zheng P, Yu J, Ma X (2010) Carbohydr Polym 79:301

    Article  CAS  Google Scholar 

  17. Ma X, Yu J (2004) Carbohydr Polym 57:197

    Article  CAS  Google Scholar 

  18. Qiao X, Tang Z, Sun K (2011) Carbohydr Polym 83:659

    Article  CAS  Google Scholar 

  19. Stein TM, Griene RV (1997) Starch/Stärke 49:245

    Article  CAS  Google Scholar 

  20. Dos Santos Rosa D, Bardi MAG, Machado LDB, Dias DB, Andrade e Silva LG, Kodama Y (2009) J Therm Anal Calorim 97:565

    Article  Google Scholar 

  21. Evans RT (1968) J Clin Pathol 21:527

    Article  CAS  Google Scholar 

  22. Gáspár M, Benkő Zs, Dogossy G, Réczey K, Czigány T (2005) Polym Degrad Stab 90:563

    Article  Google Scholar 

  23. Kampeerapappun P, Srikulkit K, Pentrakoon D (2004) J. Sci. Res. Chula. 29:183

    CAS  Google Scholar 

  24. Kumar AP, Singh RP (2008) Bioresour Technol 99:8803

    Article  CAS  Google Scholar 

  25. Liu ZQ, Yi X-S, Feng Y (2001) J Mater Sci 36:1809

    Article  CAS  Google Scholar 

  26. Mao L, Imam S, Gordon S, Cinelli P, Chiellini E (2000) J Polym Environ 8:205

    Article  CAS  Google Scholar 

  27. Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Carbohydr Polym 81:425

    Article  CAS  Google Scholar 

  28. Wittaya T (2009) Int. Food Res. J. 16:493

    CAS  Google Scholar 

  29. Lirova BI, Lyutikova EA, Vasil’eva NV, Berkuta BA, Prusskii MI (2008) Russ J Appl Chem 81:298

    Article  CAS  Google Scholar 

  30. Gul-E-Noor F, Khan MA, Ghoshal S, Khan RA, Mazid RA, Sarwaruddin Chowdhury AM (2010) J Polym Environ 18:224

    Article  CAS  Google Scholar 

  31. Mo X, Sun X (2001) J Am Oil Chem Soc 78:867

    Article  CAS  Google Scholar 

  32. Tudorachi N, Cascaval CN, Rusu M, Pruteanu M (2000) Polym Test 19:785

    Article  CAS  Google Scholar 

  33. Ramananda Bhat M, Murthy DVR, Saidutta MB (2011) ARPN J Agr. Biol. Sci. 6:60

    Google Scholar 

  34. Yusuff MTM, Ahmed OH, Ab Majid NM (2009) Am J Environ Sci 5:588

    Article  CAS  Google Scholar 

  35. Zhengping W, Cleemput O, Liantie L, Baert L (1991) Biol Fertil Soils 11:101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Grazuleviciene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grazuleviciene, V., Treinyte, J. & Zaleckas, E. Film-Forming Starch Composites for Agricultural Applications. J Polym Environ 20, 485–491 (2012). https://doi.org/10.1007/s10924-011-0400-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0400-7

Keywords

Navigation