Skip to main content
Log in

Archaeal Poly (3-hydroxybutyrate) Polymer Production from Glycerol: Optimization by Taguchi Methodology

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study the possibility of poly (3-hydroxybutyrate) production from glycerol was investigated and optimized by Halorcula sp. IRU1, a novel archaea isolated from Urmia lake, Iran in batch experiments. Using Taguchi methodology, three important independent parameters (glycerol, yeast extract and KH2PO4) were evaluated for their individual and interactive effects on poly (3-hydroxybutyrate) production. It was shown that the glycerol concentration was the most significant factor affecting the yield of poly (3-hydroxybutyrate). The optimum factor levels were a glycerol concentration of 8% (v/v), yeast extract 0.8% (w/v) and KH2PO4 0.002% (w/v). The predicted value obtained for poly (3-hydroxybutyrate) production under these conditions was about 81.87%. We can conclude that Haloarcula sp. IRU1 has a high potential for synthesis of poly (3-hydroxybutyrate) from glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barbirato F, Chedaille D, Bories A (1997) Appl Microbiol Biotechnol 47:441

    Article  CAS  Google Scholar 

  2. Mothes G, Schnorpfeil C, Ackermann JU (2007) Eng Life Sci 7:475

    Article  CAS  Google Scholar 

  3. Ibrahim MHA, Steinbuchel A (2009) Appl Environ Microbiol 75:6222

    Article  CAS  Google Scholar 

  4. da Silva GP, Mack M, Contiero J (2009) Biotechnol Adv 27:30

    Article  Google Scholar 

  5. Lee PC, Lee WG, Lee SY, Chang HN (2001) Biotechnol Bioeng 72:41

    Article  CAS  Google Scholar 

  6. Bories A, Himmi E, Jauregui J, Pelayo-Ortiz C, Gonzales V (2004) Sci Aliment. 24:121

    Article  CAS  Google Scholar 

  7. Biebl H (2001) J Ind Microbiol Biotechnol 27:18

    Article  CAS  Google Scholar 

  8. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Soc Biotechnol Jpn 100:260

    CAS  Google Scholar 

  9. Moon C, Ahn JH, Kim SW, Sang BI, Um Y (2010) Appl Biochem Biotechnol 161:502

    Article  CAS  Google Scholar 

  10. Yazdani SS, Gonzalez R (2007) Curr Opin Biotech 18:213

    Article  CAS  Google Scholar 

  11. Raynaud C, Sarcabal P, Meynial-Salles I, Croux C, Soucaille P (2003) Proc Natl Acad Sci 100:5010

    Article  CAS  Google Scholar 

  12. Vishnuvardhan Reddy S, Thirumala M, Mahmood SK (2009) World J Microbiol Biotechnol 25:391

    Article  CAS  Google Scholar 

  13. Valera RF, Lillo JAG (1992) FEMS Microbiol Rev 103:181

    Article  Google Scholar 

  14. Steinbuchel A, Fuchtenbusch B (1998) Trends Biotechnol 16:419

    Article  CAS  Google Scholar 

  15. Braunegg G, Lefebvre G, Genser KF (1998) J Biotechnol 65:127

    Article  CAS  Google Scholar 

  16. Madison L, Huisman G (1999) Microbiol Mol Biol Rev 63:21

    CAS  Google Scholar 

  17. Azegar AL, Tanisamdin R (2003) Ann Microsc 3:221

    Google Scholar 

  18. Fusun T, Zeynep F (2000) Turkish J Med Sci 30:535

    Google Scholar 

  19. Arun A, Murrugappan RM, David Ravindran AD, Veeramanikandan V, Balaji S (2006) Afr J Biotechnol 5:1524

    CAS  Google Scholar 

  20. Kamekura M, Mizuki T, Usami R, Yoshida Y, Horikoshi K, Vreeland RH (2004) In: Ventosa A (ed) Halophilic microorganisms. Springer, Heidelberg, pp 77–87

  21. Oren A, Ventosa A, Gutierrez MC, Kamekura M (1999) Int J Syst Evol Microbiol 49:1149

    CAS  Google Scholar 

  22. Slepecky RA, Law JH (1960) Anal Chem 32:1697

    Article  CAS  Google Scholar 

  23. Nisha V, Carlos Soccol R, Pandey A (2009) Appl Biochem Biotechnol 63:501

    Google Scholar 

  24. Bormann EJ, Roth M (1999) Biotechnol Lett 21:1059

    Article  CAS  Google Scholar 

  25. de Almeida A, Nikel PI, Giordano AM, Pettinari MJ (2007) Appl Environ Microbiol 73:7912

    Article  Google Scholar 

  26. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Biomacromolecules 6:561

    Article  CAS  Google Scholar 

  27. Nikel PI, Pettinari MJ, Galvagno MA, Me′ndez BS (2008) Appl Microbiol Biotechnol 77:1337

    Article  Google Scholar 

  28. Sangkharak K, Prasertsan P (2008) Electron J Biotechnol 11:1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Taran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taran, M., Azizi, E., Taran, S. et al. Archaeal Poly (3-hydroxybutyrate) Polymer Production from Glycerol: Optimization by Taguchi Methodology. J Polym Environ 19, 750–754 (2011). https://doi.org/10.1007/s10924-011-0327-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0327-z

Keywords

Navigation