Skip to main content
Log in

Effect of Manufacturing Process and Xanthan Gum Addition on the Properties of Cassava Starch Films

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The objective of this work was to manufacture biodegradable films by two different processes (casting and extrusion), from different combinations of cassava starch and xanthan gum. These films were produced by casting and by extrusion from six different starch-xanthan gum combinations (0, 2, 4, 6, 8 and 10% w/w), containing glycerol as plasticizer (20% w/w) and were also characterized according to their microstructure, optical, mechanical, and barrier properties. Scanning electron microscopy of the starch-xanthan gum extruded films showed reticulated surface and smooth interior, suggesting that xanthan was driven to the surface and gelatinized starch to the interior of the films during extrusion. Films manufactured by casting were entirely homogeneous. In general, casted films presented lower opacity and water vapor permeability and higher stress at break than films manufactured by extrusion. Xanthan gum addition affected mechanical properties of starch films, improving their stress and strain at break, especially for extruded samples, but these properties did not show stability at different RH conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chiellini E, Cinelli P, Ilieva VI, Imam SH, Lawton JL (2009) J Cell Plast 45:17–32

    Article  CAS  Google Scholar 

  2. Forsell PM, Hulleman SHD, Myllarinen PJ, Moates CK, Parker R (1999) Carbohydr Polym 39:43–51

    Article  Google Scholar 

  3. Thunwall M, Kuthanova V, Boldizar A, Rigdahl M (2008) Carbohyd Polym 71:591–597

    Article  Google Scholar 

  4. Katzbauer B (1998) Polym Degrad Stab 59:81–84

    Article  CAS  Google Scholar 

  5. Garcia-Ochoa F, Santos V, Casas J, Gomez E (2000) Biotechnol Adv 18:549–579

    Article  CAS  Google Scholar 

  6. Wang F, Sun Z, Wang YJ (2001) Food Hydrocoll 15:575–581

    Article  CAS  Google Scholar 

  7. Mandala IG, Bayas E (2004) Food Hydrocoll 18:191–201

    Article  CAS  Google Scholar 

  8. Veiga-Santos P, Oliveira L, Cereda M, Alves A, Scamparini A (2005) Food Hydrocoll 19:341–349

    Article  CAS  Google Scholar 

  9. Achayuthakan P, Suphantharika M (2008) Carbohydr Polym 71:9–17

    Article  CAS  Google Scholar 

  10. Yoshimura M, Takaya T, Nishinari K (1999) Food Hydrocoll 13:101–111

    Article  CAS  Google Scholar 

  11. Navarro AS, Martino MN, Zaritzky NE (1995) J Food Eng 26:481–495

    Article  Google Scholar 

  12. Soares R, Lima R, Oliveira R, Pires A, Soldi V (2005) Polym Degrad Stab 90:449–454

    Article  CAS  Google Scholar 

  13. Flores SK, Costa D, Yamashita F, Gerschenson LN, Grossmann MV (2010) Mater Sci Eng C 30:196–202

    Article  CAS  Google Scholar 

  14. Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE (2002) Carbohydr Polym 50:379–386

    Article  CAS  Google Scholar 

  15. Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE (2004) Carbohydr Polym 56:129–135

    Article  CAS  Google Scholar 

  16. Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Carbohydr Polym 60:283–289

    Article  CAS  Google Scholar 

  17. Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE (2006) J Food Eng 75:453–460

    Article  CAS  Google Scholar 

  18. Garcia MA, Martino MN, Zaritzky NE (2000) Starch/Stärke 52:18–124

    Article  Google Scholar 

  19. Veiga-Santos P, Suzuki M, Cereda M, Scamparini A (2005) Food Hydrocoll 19:1064–1073

    Article  CAS  Google Scholar 

  20. Sobral PJA (2000) Pesq Agropec Bras 35:1–14

    Google Scholar 

  21. Rockland LB (1960) ). Anal Chem 32:1375–1376

    Article  CAS  Google Scholar 

  22. Bizot H (1984) In: Jowitt R, Escher F, Hallistrom B, Meffert HFT, Spiess WEL, Vos G (eds) Physical properties of foods. Applied Science Publishers, London, pp 27–41

  23. ASTM E9600 (2000) Standard test methods for water vapor transmission of material. American Society for Testing and Materials, Philadelphia

  24. ASTM D882-91 (1996) Standard test methods for tensile properties of thin plastic sheeting. American Society for Testing and Materials, Philadelphia

  25. Funke U, Bergthaller W, Lindhauer MG (1998) Polym Degrad Stab 59:293–296

    Article  CAS  Google Scholar 

  26. Galdeano MC, Grossmann MVE, Mali S, Bello-Perez LA, Garcia MA (2009) Mater Sci Eng C 30:492–498

    Article  Google Scholar 

  27. Sereno N, Hill S, Mitchell J (2007) Carbohydr Res 342:333–1342

    Article  Google Scholar 

  28. Mandala IG, Palogou ED, Kostaropoulos AE (2002) J Food Eng 53:27–38

    Article  Google Scholar 

  29. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to Spectroscopy: a guide for students of organic chemistry. Thomson Learning Inc., Bellingham

  30. Mano EB, Mendes LC (1999) Introdução a Polímeros. Edgard Blucher Ltda, São Paulo

  31. Dragunski DC, Pawlika A (2001) Mater Res 4:77–81

    Article  CAS  Google Scholar 

  32. Su L, Ji WK, Lan WZ, Dong XQ (2003) Carbohydr Polym 53:497–499

    Article  CAS  Google Scholar 

  33. Miladinov VD, Hanna MA (1995) Ind Crops Prod 4:261–271

    Article  CAS  Google Scholar 

  34. Miladinov VD, Hanna MA (1996) Ind Crops Prod 5:183–188

    Article  CAS  Google Scholar 

  35. Timmermann EO, Chirife J, Iglesias HA (2001) J Food Eng 48:19–31

    Article  Google Scholar 

  36. Lai HM, Padua GW (1998) Cereal Chem 75:194–199

    Article  CAS  Google Scholar 

  37. Van den Berg C (1991) Food water relationships: progress and integration, comments, and thoughts. Plenum Press, New York

  38. Van Soest JJG, Knooren N (1997) J Appl Polym Sci 64:1411–1422

    Article  Google Scholar 

  39. Bader HG, Goritz D (1994) Starch/Starke 46:435–439

    Article  CAS  Google Scholar 

  40. Salame M (1986) In: Baker M (ed) Barrier polymers. Wiley, New York, pp 48–54

Download references

Acknowledgments

The authors wish to thank the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq-No. 577146/2008-4) of Brazil for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Mali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melo, C.P.B., Grossmann, M.V.E., Yamashita, F. et al. Effect of Manufacturing Process and Xanthan Gum Addition on the Properties of Cassava Starch Films. J Polym Environ 19, 739–749 (2011). https://doi.org/10.1007/s10924-011-0325-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0325-1

Keywords

Navigation