Skip to main content
Log in

Biodegradation of Coir and Sisal Applied in the Automotive Industry

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper discusses the results of biodegradability tests of natural fibers used by the automotive industry, namely: coir, coir with latex, and sisal. The biodegradation of coir, coir with latex, and of sisal fibers was determined by monitoring the production of carbon dioxide (CO2) (IBAMA—E.1.1.2, 1988) and fungal growth (DIN 53739, 1984). The contents of total extractives, lignin, holocellulose, ashes, carbon, nitrogen and hydrogen of the fibers under study were determined in order to ascertain their actual content and to understand the results of the biodegradation tests. The production of CO2 indicated low biodegradation, i.e., about 10% in mass, for all the materials after 45 days of testing; in other words, no material inhibited glucose degradation. However, the percentage of sisal fiber degradation was fourfold higher than that of coir with latex in the same period of aging. The fungal growth test showed a higher growth rate on sisal fibers, followed by coir without latex. In the case of coir with latex, we believe the fungal growth was not intense, because natural latex produces a bactericide or fungicide for its preservation during bleeding [1]. An evaluation of the materials after 90 days of aging tests revealed breaking of the fibers, particularly sisal and coir without latex, indicating fungal attack and biodegradation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. O. J. Morassi (Mercedes Benz do Brasil, São Bernardo do Campo, SP, Brazil, personal communication, 1999).

  2. L. F. Silva (Biotechnology Group, Chemistry Division, IPT, São Paulo, personal communication, 2002).

References

  1. Mirica CP, Rocha EC (1988) Curso básico em tecnologia de elastômeros: tecnologia dos látices, vol VI. MIC (Ministério da Indústria e do Comércio) e SUDHEVEA (Superintendência da Borracha), Brasília

  2. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  3. Scott G (2000) Green-polymers. Polym Degrad Stab 68:1–7

    Article  CAS  Google Scholar 

  4. Johnson MR, Tucker N, Barnes S (2003) Impact performance of miscanthus/Novamont Mater-Bi® biocomposites. Polym Test 22:209–215

    Article  CAS  Google Scholar 

  5. Bismarck A, Baltazar-Y-Jimenez A, Sarikakis K (2006) Green composites as panacea? Socio-economic aspects of green materials. Environ Dev Sustain 8:445–463

    Article  Google Scholar 

  6. Ashori A (2008) Wood-plastic composites as promising green-composites for automotive industries!. Bioresour Technol 99(11):4661–4667

    Article  CAS  Google Scholar 

  7. Salazar VLP (2000) Subsídios para análise do ciclo de vida de assentos à base de fibra de coco e látex. 2000. 131 f. Dissertação (Mestrado em Agronomia/Energia na Agricultura)—Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu/SP

  8. Medina JC (1959) Plantas fibrosas da flora mundial. Instituto Agronômico de Campinas, Campinas

    Google Scholar 

  9. Mattoso LHC, Ferreira FC, Curvelo AS (1997) Sisal fiber: morphology and applications. In: Leão AL, Carvalho FX, Frollini E (eds) Lignocellulosic-plastics composites. USP/UNESP, São Paulo, pp 241–266

    Google Scholar 

  10. Medina JC, Sisal O (1954) Secretaria da Agricultura do Estado de São Paulo. Diretoria de Publicidade Agrícola, São Paulo, pp 217–221

    Google Scholar 

  11. Andrade W et al (1999) Documento sobre o Sisal no Rio Grande do Norte. SINDIFIBRAS (Sindicato das Indústrias de Beneficiamento e do Descaroçamento de Algodão do Estado da Bahia), Salvador (Não paginado)

  12. Krupp LR, Jewell WJ (1992) Biodegradability of modified plastics films in controlled biological environments. Environ Sci Technol Easton 26:193–198

    Article  CAS  Google Scholar 

  13. Swift G (1993) Directions for environmentally biodegradable polymer research. Acc Chem Res Washington 26:105–110

    CAS  Google Scholar 

  14. Francetti SMM (1997) Biotransformação de polímeros sintéticos. In: Maia NB, Martos HL (eds) Indicadores ambientais. ESALQ/USP, Sorocaba, pp 131–139

    Google Scholar 

  15. Greenpeace (2002) Plastics: an environmental menace. Disponível em:http://www.things.org/~jym/greenpeace/plastics-environmental-menace.html. Acesso em: 2 abr

  16. Tomasi G et al (1996) Enzymatic degradation of bacterial poly-3-hdyroxybutyrate by a depolymerase from Pseudomonas lemoignei. Macromol Easton 29:507–513

    Article  CAS  Google Scholar 

  17. Benedict CV et al (1983) Fungal degradation of polycaprolactones. J Appl Polym Sci NY 28:327

    Article  CAS  Google Scholar 

  18. Chandra R, Rustgi R (1998) Biodegradable polymers. Progr Polym Sci Elmsford 23:1273–1335

    Article  CAS  Google Scholar 

  19. Megaert J et al (1993) Microbial degradation of poly-3-hydroxybutyrate and poly-3-hydroxybutyrate-co-3-hydroxyvalerate in soils. Appl Environ Microbiol Washington 59:3233–3238

    Google Scholar 

  20. Narayan R (1993) Impact of governmental policies, regulations and standards activities on an emerging biodegradable plastics industry. In: Proceedings of the third international scientific workshop on biodegradable plastics and polymers, 3, 1993, Elsevier, Osaka, Japan, p 261

  21. Mojo SA (2001) What’s next for biodegradable and compostable plastics? ASTM Standardization News. Disponível em: http://www.astm.org/SNEWS/APRIL_2001/mojo_apr01.html. Acesso em: 04 Fev 2002

  22. Technical Association of the Pulp and Paper Industry (1998/1999) Preparation of wood for chemical analysis. (T264 cm-97). In: TAPPI standard method. TAPPI Press, Atlanta, USA, p 3

  23. Associação Brasileira Técnica de Celulose e Papel—ABTCP (1974) Normas Técnicas. São Paulo (ABTCP M 3/69)

  24. Technical Association of the Pulp and Paper Industry (1998/1999) Acid-insoluble lignin in wood and pulp. (T222 om-98). In: TAPPI standard method. TAPPI Press, Atlanta, USA

  25. Wright PJ, Wallis AFA (1998) Rapid determination of cellulose in plantation eucalypt woods to predict kraft pulps yields. TAPPI J 81(2):126–130

    CAS  Google Scholar 

  26. Norma IBAMA E.1.1.2 (1988) Teste da biodegradabilidade imediata pela medida do dióxido de carbono desprendido em sistema aberto

  27. Norma DIN 53739 (1984) Influence of fungi and bacteria—visual evaluation—change in mass or physical properties (testing of plastics)

  28. Kiehl EJ (1998) Manual de Compostagem—maturação e qualidade do composto. ESALQ/USP, São Paulo

    Google Scholar 

  29. Lopez MJ et al (2006) Biodelignification and humification of horticultural plant residues by fungi. Int Biodeterior Biodegradation Espanha 57:24–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. P. Salazar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, V.L.P., Leão, A.L., Rosa, D.S. et al. Biodegradation of Coir and Sisal Applied in the Automotive Industry. J Polym Environ 19, 677–688 (2011). https://doi.org/10.1007/s10924-011-0315-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0315-3

Keywords

Navigation