Skip to main content

Advertisement

Log in

Development of Proteinous Bioplastics Using Bloodmeal

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the use of bloodmeal as a thermoplastic biopolymer. Processing required water and chemical additives to perform three main functions: breaking covalent cross-links using sodium sulfite (SS), sodium dodecyl sulfate and urea as processing aids, and evaporating some processing water to allow formation of new interactions to stabilize the final structure. Extrusion was only possible in the presence of SS and strongly influenced by water and urea content. It was found that once water had been removed, mechanical properties increased significantly, indicating the formation of new intermolecular forces. SDS was required for processing and consolidation, but, it may restrict formation of new intermolecular forces, if used in excessive quantities. Materials based on optimal additive levels had a tensile strength of 8 MPa, Young’s modulus of 320 MPa and toughness 1.6 MPa m½.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mohanty AK, Liu W, Tummala P, Drzal LT, Misra M, Narayan R (2005) Soy protein-based plastics, blends, and composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, Boca Raton

    Chapter  Google Scholar 

  2. Verbeek CJR, van den Berg LE (2009) Recent Pat Mater Sci 2:171

    Article  CAS  Google Scholar 

  3. De Graaf LA, Harmsen PFH, Vereijken JM, Monikes M (2001) Nahrung/Food 45:408

    Article  Google Scholar 

  4. Verbeek CJR, van den Berg LE (2009) Macromol Mater Eng 295:10

    Article  Google Scholar 

  5. Orliac O, Rouilly A, Silvestre F, Rigal L (2003) Ind Crops Prod 18:91

    Article  CAS  Google Scholar 

  6. Orliac O, Silvestre F (2003) Macromol Symp 197:193

    Article  CAS  Google Scholar 

  7. Orliac O, Silvestre F, Rouilly A, Rigal L (2003) Ind Eng Chem Res 42:1674

    Article  CAS  Google Scholar 

  8. Vaz CM, de Graaf LA, Reis RL, Cunha AM (2003) Polym Degrad Stab 81:65

    Article  CAS  Google Scholar 

  9. Vaz CM, Mano JF, Fossen M, van Tuil RF, de Graaf LA, Reis RL, Cunha AM (2002) J Macromol Sci 41:33

    Article  Google Scholar 

  10. Vaz CM, van Doeveren PFNM, Yilmaz G, de Graaf LA, Reis RL, Cunha AM (2005) J Appl Polym Sci 97:604

    Article  CAS  Google Scholar 

  11. Barone JR, Schmidt WF, Gregoire NT (2006) J Appl Polym Sci 100:1432

    Article  CAS  Google Scholar 

  12. Redl A, Morel MH, Bonicel J, Vergnes B, Guilbert S (1999) Cereal Chem 76:361

    Article  CAS  Google Scholar 

  13. Mohanty AK, Tummala P, Liu W, Misra M, Mulukutla PV, Drzal LT (2005) J Polym Environ 13:279

    Article  CAS  Google Scholar 

  14. Rouilly A, Orliac O, Silvestre F, Rigal L (2006) Bioresour Technol 97:553

    Article  CAS  Google Scholar 

  15. Calvert FE (1947) US Patent 2424383

  16. Mohammed ZH, Hill SE, Mitchell JR (2000) J Food Sci 65:221

    Article  CAS  Google Scholar 

  17. Mo X, Sun X (2001) J Am Oil Chem Soc 78:867

    Article  CAS  Google Scholar 

  18. Schmidt V, Giacomelli C, Soldi MS, Soldi V (2005) Macromol Symp 229:127

    Article  CAS  Google Scholar 

  19. Schmidt V, Giacomelli C, Soldi V (2005) Polym Degrad Stab 87:25

    Article  CAS  Google Scholar 

  20. Zhang J, Mungara P, Jane J (2001) Polymer 42:2569

    Article  CAS  Google Scholar 

  21. Zhong ZK, Sun XS (2001) J Appl Polym Sci 81:166

    Article  CAS  Google Scholar 

  22. Swain SN, Biswal SM, Nanda PK, Nayak P (2004) J Polym Environ 12:35

    Article  CAS  Google Scholar 

  23. Malhotra A, Coupland JN (2004) Food Hydrocoll 18:101

    Article  CAS  Google Scholar 

  24. Mo X, Sun X (2000) J Polym Environ 8:161

    Article  CAS  Google Scholar 

  25. Verbeek CJR, Viljoen C, Pickering KL, van den Berg LE (2009) NZ Patent NZ551531

Download references

Acknowledgments

The authors wish to thank WaikatoLink Ltd for funding the project and also for leading commercialization and intellectual property protection, as described in the New Zealand patent NZ551531 [25].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casparus J. R. Verbeek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbeek, C.J.R., van den Berg, L.E. Development of Proteinous Bioplastics Using Bloodmeal. J Polym Environ 19, 1–10 (2011). https://doi.org/10.1007/s10924-010-0232-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0232-x

Keywords

Navigation