Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Development of Proteinous Bioplastics Using Bloodmeal

Abstract

The aim of this work was to investigate the use of bloodmeal as a thermoplastic biopolymer. Processing required water and chemical additives to perform three main functions: breaking covalent cross-links using sodium sulfite (SS), sodium dodecyl sulfate and urea as processing aids, and evaporating some processing water to allow formation of new interactions to stabilize the final structure. Extrusion was only possible in the presence of SS and strongly influenced by water and urea content. It was found that once water had been removed, mechanical properties increased significantly, indicating the formation of new intermolecular forces. SDS was required for processing and consolidation, but, it may restrict formation of new intermolecular forces, if used in excessive quantities. Materials based on optimal additive levels had a tensile strength of 8 MPa, Young’s modulus of 320 MPa and toughness 1.6 MPa m½.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Mohanty AK, Liu W, Tummala P, Drzal LT, Misra M, Narayan R (2005) Soy protein-based plastics, blends, and composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, Boca Raton

  2. 2.

    Verbeek CJR, van den Berg LE (2009) Recent Pat Mater Sci 2:171

  3. 3.

    De Graaf LA, Harmsen PFH, Vereijken JM, Monikes M (2001) Nahrung/Food 45:408

  4. 4.

    Verbeek CJR, van den Berg LE (2009) Macromol Mater Eng 295:10

  5. 5.

    Orliac O, Rouilly A, Silvestre F, Rigal L (2003) Ind Crops Prod 18:91

  6. 6.

    Orliac O, Silvestre F (2003) Macromol Symp 197:193

  7. 7.

    Orliac O, Silvestre F, Rouilly A, Rigal L (2003) Ind Eng Chem Res 42:1674

  8. 8.

    Vaz CM, de Graaf LA, Reis RL, Cunha AM (2003) Polym Degrad Stab 81:65

  9. 9.

    Vaz CM, Mano JF, Fossen M, van Tuil RF, de Graaf LA, Reis RL, Cunha AM (2002) J Macromol Sci 41:33

  10. 10.

    Vaz CM, van Doeveren PFNM, Yilmaz G, de Graaf LA, Reis RL, Cunha AM (2005) J Appl Polym Sci 97:604

  11. 11.

    Barone JR, Schmidt WF, Gregoire NT (2006) J Appl Polym Sci 100:1432

  12. 12.

    Redl A, Morel MH, Bonicel J, Vergnes B, Guilbert S (1999) Cereal Chem 76:361

  13. 13.

    Mohanty AK, Tummala P, Liu W, Misra M, Mulukutla PV, Drzal LT (2005) J Polym Environ 13:279

  14. 14.

    Rouilly A, Orliac O, Silvestre F, Rigal L (2006) Bioresour Technol 97:553

  15. 15.

    Calvert FE (1947) US Patent 2424383

  16. 16.

    Mohammed ZH, Hill SE, Mitchell JR (2000) J Food Sci 65:221

  17. 17.

    Mo X, Sun X (2001) J Am Oil Chem Soc 78:867

  18. 18.

    Schmidt V, Giacomelli C, Soldi MS, Soldi V (2005) Macromol Symp 229:127

  19. 19.

    Schmidt V, Giacomelli C, Soldi V (2005) Polym Degrad Stab 87:25

  20. 20.

    Zhang J, Mungara P, Jane J (2001) Polymer 42:2569

  21. 21.

    Zhong ZK, Sun XS (2001) J Appl Polym Sci 81:166

  22. 22.

    Swain SN, Biswal SM, Nanda PK, Nayak P (2004) J Polym Environ 12:35

  23. 23.

    Malhotra A, Coupland JN (2004) Food Hydrocoll 18:101

  24. 24.

    Mo X, Sun X (2000) J Polym Environ 8:161

  25. 25.

    Verbeek CJR, Viljoen C, Pickering KL, van den Berg LE (2009) NZ Patent NZ551531

Download references

Acknowledgments

The authors wish to thank WaikatoLink Ltd for funding the project and also for leading commercialization and intellectual property protection, as described in the New Zealand patent NZ551531 [25].

Author information

Correspondence to Casparus J. R. Verbeek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verbeek, C.J.R., van den Berg, L.E. Development of Proteinous Bioplastics Using Bloodmeal. J Polym Environ 19, 1–10 (2011). https://doi.org/10.1007/s10924-010-0232-x

Download citation

Keywords

  • Protein
  • Processing
  • Extrusion