Skip to main content
Log in

Enzymatic Degradation of Poly(l-Lactic Acid): Effects of UV Irradiation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Amorphous and crystallized poly(l-lactic acid) (PLLA-A and PLLA-C, respectively) films were prepared, and the proteinase K-catalyzed enzymatic degradation of UV-irradiated and non-irradiated PLLA-A and PLLA-C films was investigated for periods up to 10 h (PLLA-A) and 60 h (PLLA-C). The molecular weights of both the PLLA-A and PLLA-C films can be manipulated by altering the UV irradiation time. The enzymatic weight loss values of the UV-irradiated PLLA films were higher than or similar to those of the non-irradiated PLLA film, when compared with the specimens of same crystallinities. UV irradiation is expected to cause the PLLA films to undergo chain cleavage (a decrease in molecular weight) and the formation of C=C double bonds. It seems that the acceleration effects from decreased molecular weight on enzymatic degradation were higher than or balanced with the disturbance effects caused by the formation of C=C double bonds. After enzymatic degradation, a fibrous structure appeared on the spherulites of the UV-irradiated PLLA-C film. This structure may have arisen from chains containing or neighboring on the C=C double bonds, which were enzymatically undegraded and assembled on the film surface during enzymatic degradation. The results of this study strongly suggest that UV irradiation will significantly affect the biodegradation behavior of PLLA materials in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kharas GB, Sanchez-Riera F, Severson DK (1994) In: Mobley DP (ed) Plastics from microbes. Hanser Publishers, New York, pp 93–137

    Google Scholar 

  2. Doi Y, Fukuda K (eds) (1994) Biodegradable plastics and polymers (Studies in Polymer Science 12). Elsevier, Amsterdam

    Google Scholar 

  3. Coombes AGA, Meikle MC (1994) Clin Mater 17:35

    Article  CAS  Google Scholar 

  4. Vert M, Schwarch G, Coudane J (1995) J Macromol Sci, Pure Appl Chem A32:787

    CAS  Google Scholar 

  5. Hartmann MH (1998) In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, Germany, pp 367–411

    Google Scholar 

  6. Ikada Y, Tsuji H (2000) Macromol Rapid Commun 21:117

    Article  CAS  Google Scholar 

  7. Albertsson A-C (ed) (2002) Degradable aliphatic polyesters (Advances in polymer science, vol 157). Springer, Berlin, Germany

    Google Scholar 

  8. Södergård A, Stolt M (2002) Prog Polym Sci 27:1123

    Article  Google Scholar 

  9. Scott G (ed) (2002) Biodegradable polymers. Principles and applications, 2nd edn. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  10. Tsuji H (2002) In: Doi Y, Steinbüchel A (eds) Polyesters III (Biopolymers, vol 4). Wiley-VCH, Weinheim, Germany, pp 129–177

    Google Scholar 

  11. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835

    Article  CAS  Google Scholar 

  12. Tsuji H, Daimon H, Fujie K (2003) Biomacromolecules 4:835

    Article  CAS  Google Scholar 

  13. Noda M, Okuyama H (1999) Chem Pharm Bull 47:467

    CAS  Google Scholar 

  14. Fan Y, Nishida H, Mori T, Shirai Y, Endo T (2004) Polymer 45:1197

    Article  CAS  Google Scholar 

  15. Ikada E (1997) J Photopolym Sci Technol 10:265

    CAS  Google Scholar 

  16. Ikada E (1998) J Photopolym Sci Technol 11:23

    CAS  Google Scholar 

  17. Ikada E (1999) J Photopolym Sci Technol 12:251

    CAS  Google Scholar 

  18. Ikada E (1999) J Environ Polym Degrad 7:197

    Article  CAS  Google Scholar 

  19. Ho K-LG, Pometto AL III (1999) J Polym Environ 7:93

    Article  CAS  Google Scholar 

  20. Sakai W, Sadakane T, Nishimoto W, Nagata M, Tsutsumi N (2002) Polymer 43:6231

    Article  CAS  Google Scholar 

  21. Copinet A, Bertrand C, Longieras A, Coma V, Couturier Y (2003) J Polym Environ 11:169

    Article  CAS  Google Scholar 

  22. Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y (2004) Chemosphere 55:763

    Article  CAS  Google Scholar 

  23. Williams DF (1981) Eng Med 10:5

    Google Scholar 

  24. Cai H, Dave V, Gross RA, McCarthy SP (1996) J Polym Sci: Part B: Polym Phys 34:2701

    Article  Google Scholar 

  25. Reeve MS, McCarthy SP, Downey MJ, Gross RA (1994) Macromolecules 27:825

    Article  CAS  Google Scholar 

  26. MacDonald RT, McCarthy SP, Gross RA (1996) Macromolecules 29:7356

    Article  CAS  Google Scholar 

  27. Li S, McCarthy SP (1999) Macromolecules 32:4454

    Article  CAS  Google Scholar 

  28. Li S, Tenon M, Garreau H, Braud C, Vert M (2000) Polym Degrad Stab 67:85

    Article  CAS  Google Scholar 

  29. Tsuji H, Miyauchi S (2001) Polym Degrad Stab 71:415

    Article  CAS  Google Scholar 

  30. Tsuji H, Miyauchi S (2001) Polymer 42:4463

    Article  CAS  Google Scholar 

  31. Tsuji H, Miyauchi S (2001) Biomacromolecules 2:597

    Article  CAS  Google Scholar 

  32. Shirahama H, Mizuma K, Umemoto K, Yasuda H (2001) J Polym Sci: Part A: Polym Chem 39:1374

    Article  CAS  Google Scholar 

  33. Shirahama H, Tanaka A, Yasuda H (2002) J Polym Sci: Part A: Polym Chem 40:302

    Article  CAS  Google Scholar 

  34. Tsutsumi C, Shirahama H, Yasuda H (2002) Macromol Biosci 2:223

    Article  CAS  Google Scholar 

  35. Tsutsumi C, Nakagawa K, Shirahama H, Yasuda H (2003) Polym Int 52:439

    Article  CAS  Google Scholar 

  36. Watanabe Y, Shirahama H, Yasuda H (2004) React Funct Polym 59:211

    Article  CAS  Google Scholar 

  37. Teramoto Y, Nishio Y (2004) Biomacromolecules 5:407

    Article  CAS  Google Scholar 

  38. Tsuji H, Tezuka Y (2005) Macromol Biosci 5:135

    Article  CAS  Google Scholar 

  39. Tsuji H, Tezuka Y, Yamada K (2005) J Polym Sci: Part B: Polym Phys 49:1064

    Article  Google Scholar 

  40. Sheth M, Ananda Kumar R, Dave V, Gross RA, McCarthy SP (1997) J Appl Polym Sci 66:1495

    Article  CAS  Google Scholar 

  41. Nagata M, Okano F, Sakai W, Tsutsumi N (1998) J Polym Sci: Part A: Polym Chem 36:1861

    Article  CAS  Google Scholar 

  42. Tsuji H, Muramatsu H (2001) Polym Degrad Stab 71:403

    Article  CAS  Google Scholar 

  43. Gajria AM, Dave V, Gross RA, McCarthy SP (1996) Polymer 37:437

    Article  CAS  Google Scholar 

  44. Gan Z, Yu D, Zhong Z, Liang Q, Jing X (1999) Polymer 40:2859

    Article  CAS  Google Scholar 

  45. Liu L, Li S, Garreau H, Vert M (2000) Biomacromolecules 1:350

    Article  CAS  Google Scholar 

  46. Tsuji H, Ishizaka T (2001) Macromol Biosci 1:59

    Article  CAS  Google Scholar 

  47. Fukuda N, Tsuji H, Ohnishi Y (2002) Polym Degrad Stab 78:119

    Article  CAS  Google Scholar 

  48. Fukuda N, Tsuji H (2005) J Appl Polym Sci 96:190

    Article  CAS  Google Scholar 

  49. Tsuji H, Ishida T, Fukuda N (2003) Polym Int 52:843

    Article  CAS  Google Scholar 

  50. Tsuji H, Ishida T (2003) Macromol Biosci 3:51

    Article  CAS  Google Scholar 

  51. Tsuji H, Echizen Y, Nishimura Y (2006) Polym Degrad Stab 91:1128

    Article  CAS  Google Scholar 

  52. Tsuji H, Echizen Y, Saha SK, Nishimura Y (2005) Macromol Mater Eng 290:1192

    Article  CAS  Google Scholar 

  53. Miyata T, Masuko T (1998) Polymer 39:5515

    Article  CAS  Google Scholar 

  54. Tsuji H, Ikarashi K, Fukuda N (2004) Polym Degrad Stab 84:515

    Article  CAS  Google Scholar 

  55. Tsuji H, Ikarashi K (2004) Polym Degrad Stab 85:647

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Mikiko Fujita, Textile Research Center, Aichi Industrial Technology Institute (AITEC) for the irradiation experiments. This research was supported by a Grant-in-Aid for Scientific Research on Priority Area, “Sustainable Biodegradable Plastics”, No. 11217209, and The 21st Century Centers of Excellence (COE) Program, “Ecological Engineering for Homeostatic Human Activities”, from the Ministry of Education, Culture, Sports, Science and Technology (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideto Tsuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuji, H., Echizen, Y. & Nishimura, Y. Enzymatic Degradation of Poly(l-Lactic Acid): Effects of UV Irradiation. J Polym Environ 14, 239–248 (2006). https://doi.org/10.1007/s10924-006-0023-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-006-0023-6

Keywords

Navigation