Skip to main content
Log in

Scattering Analysis of Glaze Ice Accretion on CFRP Laminated Composite Plate Structures Using Ultrasonic Lamb Waves: Towards Aviation Safety

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The ice formation over the aerofoil structure of the aircraft wing has been an obstruction as they abrupt the airflow, acting as drag. The investigation will intend to determine ice accumulation on carbon fiber-reinforced polymer (CFRP), approximated as ice build-up on aircraft wings. The observation is carried out over quasi-isotropic composite laminates using ultrasonic-guided waves with a central working frequency regime of 100 kHz. The three-dimensional (3D) finite element (FE) simulations are performed to observe the scattering effect to explore the reflection site in the far field. This effect was quite prominent for different thicknesses of Glaze ice (G-Ice) and was found to be strongly linked with the wave propagation and dispersion effect. The scattering results for the reflection of Lamb mode, when it interacted with the G-Ice interface, were quite noteworthy along the angular region rather than on the center line, indicating that the scattering was more prominent due to the presence of a 45° or (− 45)-degree fiber orientation in that laminate. A similar but complex scattering phenomenon was observed for different stacking sequences where the wave propagation angle and its amplitude at the receiver nodes are found to be closely bound with the exponential decay in group/phase velocity for the ice thicknesses studied. The FE approach is verified, and the results are validated analytically. Analytically, we have investigated a much-closed approximation with the detectability obtained from three-dimensional studies. Where the dispersion study performed has also contributed to verifying the present investigation in the long wavelength limits. This study can reveal the various optimized locations for placing the sensor for ice detection and quantification, which can be further helpful for practical guided wave inspection in ice detection and its removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Data will be made available on genuine requests.

References

  1. Krautkrämer, J., Krautkrämer, H.: Ultrasonic testing by determination of material properties. In: Ultrasonic Testing of Materials. Springer, Berlin (1990)

    Chapter  Google Scholar 

  2. Gupta, S., Rajagopal, P.: S0 Lamb mode scattering studies in laminated composite plate structures with surface breaking cracks; insights into crack opening behavior. Ultrasonics, 129, 106901 (2023). https://doi.org/10.1016/j.ultras.2022.106901

    Article  CAS  Google Scholar 

  3. Gholizadeh, S.: A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 1, 50–57 (2016). https://doi.org/10.1016/j.prostr.2016.02.008

    Article  Google Scholar 

  4. Michaels, J.E.: Detection, localization and characterization of damage in plates with an in-situ array of spatially distributed ultrasonic sensors. Smart Mater. Struct. 17(3), 035035 (2008). https://doi.org/10.1088/0964-1726/17/3/035035/meta

    Article  ADS  MathSciNet  Google Scholar 

  5. Taheri, H., Hassen, A.A.: Nondestructive ultrasonic inspection of composite materials: a comparative advantage of phased array ultrasonic. Appl. Sci. 9(8), 1628 (2019). https://doi.org/10.3390/app9081628

    Article  CAS  Google Scholar 

  6. Campos-Castellanos, C., Gharaibeh, Y., Mudge, P., Kappatos, V.: The application of long-range ultrasonic testing (LRUT) for examination of hard to access areas on railway tracks. IET Digit. Libr. (2011). https://doi.org/10.1049/cp.2011.0618

    Book  Google Scholar 

  7. Khalili, P., Cawley, P.: The choice of ultrasonic inspection method for the detection of corrosion at inaccessible locations. NDT & E Int. 99, 80–92 (2018). https://doi.org/10.1016/j.ndteint.2018.06.003

    Article  Google Scholar 

  8. di Scalea, F.L., McNamara, J.: Ultrasonic NDE of railroad tracks: air-coupled cross-sectional inspection and long-range inspection. Insight-Non-Destruct. Test. Cond. Monit. 45(6), 394–401 (2003). https://doi.org/10.1784/insi.45.6.394.52890

    Article  Google Scholar 

  9. Mudge, P.J., Catton, P.: Quantification of defect size from long range guided wave ultrasonic tests on pipes. In: AIP Conference Proceedings, vol. 975, no. 1, pp. 147–154 (2008). American Institute of Physics. https://doi.org/10.1063/1.2902610

  10. Bartoli, I., di Scalea, F.L., Fateh, M., Viola, E.: Modeling guided wave propagation with application to the long-range defect detection in railroad tracks. NDT & E Int. 38(5), 325–334 (2005). https://doi.org/10.1016/j.ndteint.2004.10.008

    Article  Google Scholar 

  11. Sibilski, K., Lasek, M., Ladyzynska-Kozdras, E., Maryniak, J.: Aircraft climbing flight dynamics with simulated ice accretion. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, p. 4948 (2004). https://doi.org/10.2514/6.2004-4948

  12. Cao, Y., Huang, J., Yin, J.: Numerical simulation of three-dimensional ice accretion on an aircraft wing. Int. J. Heat Mass Transf. 92, 34–54 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.027

    Article  Google Scholar 

  13. Zhang, X., Wu, X., Min, J.: Aircraft icing model considering both rime ice property variability and runback water effect. Int. J. Heat Mass Transf. 104, 510–516 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.086

    Article  Google Scholar 

  14. Politovich, M.K.: Predicting glaze or rime ice growth on airfoils. J. Aircr. 37(1), 117–121 (2000). https://doi.org/10.2514/2.2570

    Article  Google Scholar 

  15. Alemour, B., Badran, O., Hassan, M.R.: A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation. J. Aerosp. Technol. Manag. (2019). https://doi.org/10.5028/jatm.v11.1022

    Article  Google Scholar 

  16. Perkins, P., Rieke, W.: Aircraft icing problems-after 50 years. In: 31st Aerospace Sciences Meeting, p. 392, (1993). https://doi.org/10.2514/6.1993-392

  17. Cao, Y., Wu, Z., Su, Y., Xu, Z.: Aircraft flight characteristics in icing conditions. Prog. Aerosp. Sci. 74, 62–80 (2015). https://doi.org/10.1016/j.paerosci.2014.12.001

    Article  Google Scholar 

  18. Lynch, F.T., Khodadoust, A.: Effects of ice accretions on aircraft aerodynamics. Prog. Aerosp. Sci. 37(8), 669–767 (2001). https://doi.org/10.1016/S0376-0421(01)00018-5

    Article  Google Scholar 

  19. Bagherzadeh, S.A., Asadi, D.: Detection of the ice assertion on aircraft using empirical mode decomposition enhanced by multi-objective optimization. Mech. Syst. Signal Process. 88, 9–24 (2017). https://doi.org/10.1016/j.ymssp.2016.11.013

    Article  ADS  Google Scholar 

  20. Jarvinen, P.: Aircraft ice detection method. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, p. 696 (2007). https://doi.org/10.2514/6.2007-696

  21. Ikiades, A.A.: Direct ice detection based on fiber optic sensor architecture. Appl. Phys. Lett. 91(10), 104104 (2007). https://doi.org/10.1063/1.2772183

    Article  ADS  CAS  Google Scholar 

  22. Ikiades, A.: Fiber optic ice sensor for measuring ice thickness, type and the freezing fraction on aircraft wings. Aerospace 10(1), 31 (2022). https://doi.org/10.3390/aerospace10010031

    Article  Google Scholar 

  23. Gonzalez, M., Frövel, M.: Fiber Bragg grating sensors ice detection: methodologies and performance. Sens. Actuators A 346, 113778 (2022). https://doi.org/10.1016/j.sna.2022.113778

    Article  CAS  Google Scholar 

  24. Ikiades, A.A., Armstrong, D.J., Hare, G.G., Konstantaki, M., Crossley, S.D.: Fiber optic sensor technology for air conformal ice detection. In: Industrial and Highway Sensors Technology, vol. 5272, pp. 357–368. SPIE (2004). https://doi.org/10.1117/12.516910

  25. Shajiee, S., Pao, L.Y., Wagner, P.N., Moore, E.D., McLeod, R.R.: Direct ice sensing and localized closed-loop heating for active de-icing of wind turbine blades. In: 2013 American Control Conference, pp. 634–639. IEEE (2013). https://doi.org/10.1109/ACC.2013.6579908

  26. Fortin, G., Perron, J.: Wind turbine icing and de-icing. In: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 274 (2009). https://doi.org/10.2514/6.2009-274

  27. Ikiades, A., Howard, G., Armstrong, D.J., Konstantaki, M., Crossley, S.: Measurement of optical diffusion properties of ice for direct detection ice accretion sensors. Sens. Actuators A 140(1), 24–31 (2007). https://doi.org/10.1016/j.sna.2007.05.036

    Article  CAS  Google Scholar 

  28. Kozak, R., Wiltshire, B.D., Khandoker, M.A.R., Golovin, K., Zarifi, M.H.: Modified microwave sensor with a patterned ground heater for detection and prevention of ice accumulation. ACS Appl. Mater. Interfaces 12(49), 55483–55492 (2020). https://doi.org/10.1021/acsami.0c17173

    Article  CAS  PubMed  Google Scholar 

  29. Leleux, A., Micheau, P., Castaings, M.: Long range detection of defects in composite plates using lamb waves generated and detected by ultrasonic phased array probes. J. Nondestruct. Eval. 32, 200–214 (2013). https://doi.org/10.1007/s10921-013-0173-0

    Article  Google Scholar 

  30. Staszewski, W.J.: Ultrasonic/guided waves for structural health monitoring. In: Key Engineering Materials, vol. 293, pp. 49–62. Trans Tech Publications Ltd, Zurich (2005)

    Google Scholar 

  31. Wilcox, P., Lowe, M., Cawley, P.: The effect of dispersion on long-range inspection using ultrasonic guided waves. NDT & E Int. 34(1), 1–9 (2001). https://doi.org/10.1016/S0963-8695(00)00024-4

    Article  Google Scholar 

  32. Rose, J.L.: A baseline and vision of ultrasonic guided wave inspection potential. J. Press. Vessel. Technol. 124(3), 273–282 (2002). https://doi.org/10.1115/1.1491272

    Article  Google Scholar 

  33. Qu, J., Liu, G.: Effects of residual stress on guided waves in layered media. Rev. Progr. Quant. Nondestruct. Eval. 17A, 1635–1642 (1998). https://doi.org/10.1007/978-1-4615-5339-7_212

    Article  Google Scholar 

  34. Phan, H., Cho, Y., Pham, C.V., Nguyen, H., Bui, T.Q.: A theoretical approach for guided waves in layered structures. In: AIP Conference Proceedings, vol. 2102, no. 1, p. 050011. AIP Publishing LLC (2019). https://doi.org/10.1063/1.5099777

  35. Bars, I.E.: Brian Pavlakovic, Mike Lowe, and Peter Cawley Imperial College NDT Laboratory Mechanical Engineering Building. Rev. Progr. Quant. Nondestruct. Eval. 18, 207 (2012)

    Google Scholar 

  36. Veidt, M., Ng, C.-T.: Influence of stacking sequence on scattering characteristics of the fundamental anti-symmetric Lamb wave at through holes in composite laminates. J. Acoust. Soc. Am. 129(3), 1280–1287 (2011). https://doi.org/10.1121/1.3533742

    Article  ADS  PubMed  Google Scholar 

  37. Makkonen, L.: Models for the growth of rime, glaze, icicles and wet snow on structures. Philos. Trans. R. Soc. Lond. Ser. A 358(1776), 2913–2939 (2000)

    Article  ADS  Google Scholar 

  38. Mellor, M.: Mechanical behavior of sea ice. In: The Geophysics of Sea Ice, pp. 165–281. Springer, Boston (1986)

    Chapter  Google Scholar 

  39. Gao, H., Rose, J.L.: Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 334–344 (2009). https://doi.org/10.1109/TUFFC.2009.1042

    Article  PubMed  Google Scholar 

  40. Manual, A.S.U.S.: Abaqus 6.11. http://130.149, 89(2080), v6 (2012)

  41. Börgesson, L.: Abaqus. In: Developments in Geotechnical Engineering, vol. 79, pp. 565–570. Elsevier, New York (1996)

    Google Scholar 

  42. Wang, Y., Pasiliao, C.L.: Modeling ablation of laminated composites: a novel manual mesh moving finite element analysis procedure with ABAQUS. Int. J. Heat Mass Transf. 116, 306–313 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.038

    Article  Google Scholar 

  43. Wilcox, P., Lowe, M., Cawley, P.: Long range Lamb wave inspection: the effect of dispersion and modal selectivity. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 18A. Springer, Boston (1999)

    Google Scholar 

  44. Keefe, D.H., Ling, R., Bulen, J.C.: Method to measure acoustic impedance and reflection coefficient. J. Acoust. Soc. Am. 91(1), 470–485 (1992). https://doi.org/10.1121/1.402733

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Chen, H., Fan, D., Huang, J., Huang, W., Zhang, G., Huang, L.: Finite element analysis model on ultrasonic phased array technique for material defect time of flight diffraction detection. Sci. Adv. Mater. 12(5), 665–675 (2020). https://doi.org/10.1166/sam.2020.3689

    Article  CAS  Google Scholar 

  46. Prosser, W.H., Seale, M.D., Smith, B.T.: Time-frequency analysis of the dispersion of Lamb modes. J. Acoust. Soc. Am. 105(5), 2669–2676 (1999). https://doi.org/10.1121/1.426883

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Ing, R.K., Fink, M.: Time recompression of dispersive Lamb waves using a time reversal mirror-application to flaw detection in thin plates. In: Proceedings of IEEE Ultrasonics Symposium, vol. 1, pp. 659–663. IEEE (1996). https://doi.org/10.1109/ULTSYM.1996.584061

  48. Palacios, J., Zhu, Y., Smith, E., Rose, J.: Ultrasonic shear and lamb wave interface stress for helicopter rotor de-icing purposes. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th, p. 2282 (2006). https://doi.org/10.2514/6.2006-2282

  49. Lax, M.: Multiple scattering of waves. Rev. Mod. Phys. 23(4), 287 (1951). https://doi.org/10.1103/RevModPhys.23.287

    Article  ADS  MathSciNet  Google Scholar 

  50. Yang, R.B., Mal, A.K.: Multiple scattering of elastic waves in a fiber-reinforced composite. J. Mech. Phys. Solids 42(12), 1945–1968 (1994). https://doi.org/10.1016/0022-5096(94)90020-5

    Article  ADS  Google Scholar 

  51. Sharma, J.N., Pal, M.: Propagation of Lamb waves in a transversely isotropic piezothermoelastic plate. J. Sound Vib. 270(4–5), 587–610 (2004). https://doi.org/10.1016/S0022-460X(03)00093-2

    Article  ADS  Google Scholar 

  52. Lee, H.S., Kim, Y.Y.: Guided wave scattering analysis for a plate with arbitrarily shaped elastic inclusions using the T-matrix method. J. Sound Vib. 360, 97–111 (2016). https://doi.org/10.1016/j.jsv.2015.09.003

    Article  ADS  Google Scholar 

  53. Cho, Y., Rose, J.L.: A boundary element solution for a mode conversion study on the edge reflection of Lamb waves. J. Acoust. Soc. Am. 99(4), 2097–2109 (1996). https://doi.org/10.1121/1.415396

    Article  ADS  Google Scholar 

  54. Hayashi, T., Song, W.J., Rose, J.L.: Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41(3), 175–183 (2003). https://doi.org/10.1016/S0041-624X(03)00097-0

    Article  PubMed  Google Scholar 

  55. Liu, G.R., Achenbach, J.D.: Strip element method to analyze wave scattering by cracks in anisotropic laminated plates. J. Appl. Mech. (1995). https://doi.org/10.1115/1.2895989

    Article  Google Scholar 

  56. Pain, H.J., Rankin, P.: Introduction to Vibrations and Waves. Wiley, New York (2015)

    Google Scholar 

  57. Pain, H.J.: The physics of vibrations and waves (2001). https://doi.org/10.1119/1.4765685

    Article  Google Scholar 

  58. Pavlakovic, B., Lowe, M., Alleyne, D., Cawley, P.: Disperse: a general purpose program for creating dispersion curves. Rev. Progr. Quant. Nondestruct. Eval 16A, 185–192 (1997). https://doi.org/10.1007/978-1-4615-5947-4_24

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author is very grateful to the Center for Nondestructive Evaluation Indian Institute of Technology Madras for allowing them to access Disperse for wave dispersion analysis. The authors thank Dr. Rajan Prasad, Assistant Professor IIT Delhi, and Dr. Pankaj Dhaka Research Scientist at General Electricals Bangalore, for contributing to the technical discussion in FE modelling.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SG wrote the major technical portion of the manuscript and contributed to analyzing all the FE and scattering results presented. He is also responsible for performing all the analytical-based studies and contributing to generating the SDP patterns by writing the codes in math works. SS contributes to generating the 3D FE results using commercially available software and dispersion results. And assists in writing the manuscript.

Corresponding author

Correspondence to Saurabh Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this investigation.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors of the research work titled “Scattering Analysis of Glaze Ice Accretion on CFRP Laminated Composite Plate Structures Using Ultrasonic Lamb Waves: Towards Aviation Safety” gives their consent for publishing their investigation in the Journal of Nondestructive of Evaluation (Published by Springer/1573-4862).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Domain: UT Guided Waves in Complex Composites Structures, Scattering, Icing and De-Icing.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Sutrave, S. Scattering Analysis of Glaze Ice Accretion on CFRP Laminated Composite Plate Structures Using Ultrasonic Lamb Waves: Towards Aviation Safety. J Nondestruct Eval 43, 13 (2024). https://doi.org/10.1007/s10921-023-01030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-01030-z

Keywords

Navigation