Skip to main content

Numerical Simulation of Contact Acoustic Nonlinearities in Damaged CFRP Laminates Through Laser-Induced Guided Waves

  • Conference paper
  • First Online:
Experimental Vibration Analysis for Civil Engineering Structures (EVACES 2023)

Abstract

The importance of Carbon Fiber Reinforced Polymer (CFRP) materials in numerous industries demands more accurate and timely damage identification methods. Delamination, a typical damage mechanism, heavily affects laminates’ performance and requires prompt detection to ensure the safeness and operability of CFRP structures. This paper explores the use of guided waves to excite contact acoustic nonlinearities (CANs) in a damaged quasi-isotropic CFRP laminate. Delamination-induced CANs are exploited to identify the shape and position of delamination. The Finite Element Method (FEM) is used to model CAN generation and propagation. In the numerical model, a Gaussian laser beam heating the laminate surface induces Ultrasonic Guided Wave (UGW) propagation. The vertical displacement of the damaged laminate is measured by simulating a Scanning Laser Doppler Vibrometer (SLDV). Using 2D Continuous Wavelet Transformation (2D-CWT), the 2D wavefield is converted into the spatiotemporal frequency domain and analyzed to detect resonance frequencies. Two case scenarios are analyzed for a 16 plies CFRP laminate: delamination between the 13th and 14th layer (near the surface) and delamination between the 4th and 5th layer (near the bottom). The ability of this method to detect and assess both shallow and deep delamination in CFRP laminates is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chung, D.D.L.: Introduction to carbon composites. In: Carbon Composites, pp. 88–160. Elsevier (2017)

    Google Scholar 

  2. Miyano, Y., Nakada, M.: Accelerated testing methodology for durability of CFRP. Compos. B Eng. 191, 107977 (2020). https://doi.org/10.1016/j.compositesb.2020.107977

    Article  Google Scholar 

  3. Talreja, R.: Manufacturing defects in composites and their effects on performance. In: Polymer Composites in the Aerospace Industry, pp. 99–113. Elsevier Inc. (2015)

    Google Scholar 

  4. Abrate, S.: Impact on laminated composite materials. Appl. Mech. Rev. 44, 155–190 (1991). https://doi.org/10.1115/1.3119500

    Article  Google Scholar 

  5. Alam, P., Mamalis, D., Robert, C., Floreani, C., Ó Brádaigh, C.M.: The fatigue of carbon fibre reinforced plastics - a review. Compos. B Eng. 166, 555–579 (2019). https://doi.org/10.1016/j.compositesb.2019.02.016

  6. Raju, I.S., O’Brien, T.K.: Fracture mechanics concepts, stress fields, strain energy re-lease rates, delamination initiation and growth criteria. In: Delamination Behaviour of Composite, pp. 3–27. Elsevier (2008)

    Google Scholar 

  7. Bak, B.L.V., Sarrado, C., Turon, A., Costa, J.: Delamination under fatigue loads in composite laminates: a review on the observed phenomenology and computational methods. Appl. Mech. Rev. 66 (2014). https://doi.org/10.1115/1.4027647

  8. Johnson, A.F., Toso-Pentecôte, N.: Determination of delamination damage in composites under impact loads. In: Delamination Behaviour of Composites, pp. 561–585. Elsevier (2008)

    Google Scholar 

  9. Gholizadeh, S.: A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 1, 50–57 (2016). https://doi.org/10.1016/j.prostr.2016.02.008

    Article  Google Scholar 

  10. Mitra, M., Gopalakrishnan, S.: Guided wave based structural health monitoring: a review. Smart Mater. Struct. 25, 053001 (2016). https://doi.org/10.1088/0964-1726/25/5/053001

    Article  Google Scholar 

  11. Saito, O., Higuchi, N., Sen, E., Okabe, Y.: Analysis of ultrasonic waves generated by oblique incidence of a laser. Insight - Non-Destruct. Test. Condition Monitor. 61, 714–719 (2019). https://doi.org/10.1784/insi.2019.61.12.714

    Article  Google Scholar 

  12. Takatsubo, J., Wang, B., Tsuda, H., Toyama, N.: Generation laser scanning method for the visualization of ultrasounds propagating on a 3-D object with an arbitrary shape. J. Solid Mech. Mater. Eng. 1, 1405–1411 (2007). https://doi.org/10.1299/jmmp.1.1405

    Article  Google Scholar 

  13. Solodov, I., Krohn, N., Busse, G.: CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40, 621–625 (2002). https://doi.org/10.1016/S0041-624X(02)00186-5

    Article  Google Scholar 

  14. Segers, J., Kersemans, M., Hedayatrasa, S., Calderon, J., Van Paepegem, W.: Towards in-plane local defect resonance for non-destructive testing of polymers and composites. NDT E Int. 98, 130–133 (2018). https://doi.org/10.1016/j.ndteint.2018.05.007

    Article  Google Scholar 

  15. Wei, L., Chen, J.: Characterization of delamination features of orthotropic CFRP laminates using higher harmonic generation technique: experimental and numerical studies. Compos Struct. 285 (2022). https://doi.org/10.1016/j.compstruct.2022.115239

  16. Knopoff, L.: A matrix method for elastic wave problems. Bull. Seismol. Soc. Am. 54, 431–438 (1964). https://doi.org/10.1785/BSSA0540010431

    Article  Google Scholar 

  17. Bartoli, I., Marzani, A., Lanza di Scalea, F., Viola, E.: Modeling wave propagation in damped waveguides of arbitrary cross-section. J. Sound Vib. 295, 685–707 (2006). https://doi.org/10.1016/j.jsv.2006.01.021

  18. Orta, A.H., Kersemans, M., Van Den Abeele, K.: A comparative study for calculating dispersion curves in viscoelastic multi-layered plates. Compos Struct. 294, 115779 (2022). https://doi.org/10.1016/j.compstruct.2022.115779

    Article  Google Scholar 

  19. Orta, A.H., Vandendriessche, J., Kersemans, M., Van Paepegem, W., Roozen, N.B., Van Den Abeele, K.: Modeling lamb wave propagation in visco-elastic composite plates using a fifth-order plate theory. Ultrasonics 116, 106482 (2021). https://doi.org/10.1016/j.ultras.2021.106482

    Article  Google Scholar 

  20. Maio, L., Fromme, P.: On ultrasound propagation in composite laminates: advances in numerical simulation. Prog. Aerosp. Sci. 129, 100791 (2022). https://doi.org/10.1016/j.paerosci.2021.100791

    Article  Google Scholar 

  21. Biwa, S., Nakajima, S., Ohno, N.: On the Acoustic nonlinearity of solid-solid contact with pressure-dependent interface stiffness. J. Appl. Mech. 71, 508–515 (2004). https://doi.org/10.1115/1.1767169

    Article  MATH  Google Scholar 

  22. Yuan, M., Zhang, J., Song, S.-J., Kim, H.-J.: Numerical simulation of Rayleigh wave interaction with surface closed cracks under external pressure. Wave Motion 57, 143–153 (2015). https://doi.org/10.1016/j.wavemoti.2015.03.009

    Article  MathSciNet  MATH  Google Scholar 

  23. Kudela, P., Wandowski, T., Malinowski, P., Ostachowicz, W.: Application of scanning laser doppler vibrometry for delamination detection in composite structures. Opt. Lasers Eng. 99, 46–57 (2017). https://doi.org/10.1016/j.optlaseng.2016.10.022

    Article  Google Scholar 

  24. Murenzi, R.: Wavelet transforms associated to the n-dimensional Euclidean group with dilations: signal in more than one dimension. In: Combes, J.M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets. Inverse Problems and Theoretical Imaging, pp. 239–246. Springer, Berling, Heidelberg (1990). https://doi.org/10.1007/978-3-642-97177-8_22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shain Azadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azadi, S., Carvelli, V. (2023). Numerical Simulation of Contact Acoustic Nonlinearities in Damaged CFRP Laminates Through Laser-Induced Guided Waves. In: Limongelli, M.P., Giordano, P.F., Quqa, S., Gentile, C., Cigada, A. (eds) Experimental Vibration Analysis for Civil Engineering Structures. EVACES 2023. Lecture Notes in Civil Engineering, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-031-39117-0_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39117-0_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39116-3

  • Online ISBN: 978-3-031-39117-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics