Skip to main content
Log in

Abnormal Signals Elimination in Hardness Evaluation Using Barkhausen Noise and Tangential Magnetic Field

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In this paper, magnetic Barkhausen noise (MBN) and tangential magnetic field (TMF) are employed to quantitatively predict the hardness of bearing steel GCr15. In order to solve the problems that MBN and TMF signals are susceptible to electromagnetic interference (EMI) and sensor vibration during the inspection process, which lead to the decrease of the hardness prediction accuracy, a feature-based abnormal signal elimination algorithm is proposed. The features of MBN and TMF signals are used to determine whether the signals are affected by EMI or sensor vibration. To verify the effectiveness of the algorithm, the multiple linear regression (MLR) and multilayer perceptron (MLP) hardness prediction model are developed based on MBN and TMF features. After removing abnormal signals, the hardness prediction error of MLR model is reduced from 21.39 to 1.25% and the hardness prediction error of MLP model is reduced from 7.75 to 0.13%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The datasets are available from the corresponding author on reasonable request.

References

  1. Sorsa, A., Leiviskä, K., Santa-aho, S., Lepistö, T.: Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement. NDT & E Int. 46, 100–106 (2012). https://doi.org/10.1016/j.ndteint.2011.11.008

    Article  Google Scholar 

  2. Franco, F.A., González, M., De Campos, M., Padovese, L.: Relation between magnetic Barkhausen noise and hardness for jominy quench tests in SAE 4140 and 6150 steels. J. Nondestr. Eval. 32, 93–103 (2013)

    Article  Google Scholar 

  3. Ding, S., Tian, G., Sutthaweekul, R.: Non-destructive hardness prediction for 18CrNiMo7–6 steel based on feature selection and fusion of magnetic Barkhausen noise. NDT & E Int. 107, 102138 (2019). https://doi.org/10.1016/j.ndteint.2019.102138

    Article  Google Scholar 

  4. Dong, H., Liu, X., Song, Y., Wang, B., Chen, S., He, C.: Quantitative evaluation of residual stress and surface hardness in deep drawn parts based on magnetic Barkhausen noise technology. Measurement 168, 108473 (2021). https://doi.org/10.1016/j.measurement.2020.108473

    Article  Google Scholar 

  5. Alberteris Campos, M., Capó-Sánchez, J., Pérez Benítez, J., Padovese, L.R.: Characterization of the elastic–plastic region in AISI/SAE 1070 steel by the magnetic barkhausen noise. NDT & E Int. 41, 656–659 (2008). https://doi.org/10.1016/j.ndteint.2008.03.003

    Article  Google Scholar 

  6. Caldas-Morgan, M., Padovese, L.R.: Fast detection of the magnetic easy axis on steel sheet using the continuous rotational Barkhausen method. NDT & E Int. 45, 148–155 (2012). https://doi.org/10.1016/j.ndteint.2011.10.003

    Article  Google Scholar 

  7. Xiucheng, L., Ruihuan, Z., Bin, W., Cunfu, H.: Quantitative prediction of surface hardness in 12CrMoV steel plate based on magnetic Barkhausen noise and tangential magnetic field measurements. J. Nondestr. Eval. 37, 1–8 (2018)

    Article  Google Scholar 

  8. Dobmann, G., Pitsch, H.: Magnetic tangential field-strength-inspection, a further NDT tool for 3MA. 636–643 (1989)

  9. Li, K., Li, L., Wang, P., Liu, J., Shi, Y., Zhen, Y., Dong, S.: A fast and non-destructive method to evaluate yield strength of cold-rolled steel via incremental permeability. J. Magn. Magn. Mater. 498, 166087 (2020). https://doi.org/10.1016/j.jmmm.2019.166087

    Article  Google Scholar 

  10. Gupta, B., Uchimoto, T., Ducharne, B., Sebald, G., Miyazaki, T., Takagi, T.: Magnetic incremental permeability non-destructive evaluation of 12 Cr–Mo–W–V steel creep test samples with varied ageing levels and thermal treatments. NDT & E Int. 104, 42–50 (2019). https://doi.org/10.1016/j.ndteint.2019.03.006

    Article  Google Scholar 

  11. Artetxe, I., Arizti, F., Martínez-de-Guerenu, A.: Analysis of the voltage drop across the excitation coil for magnetic characterization of skin passed steel samples. Measurement 174, 109000 (2021). https://doi.org/10.1016/j.measurement.2021.109000

    Article  Google Scholar 

  12. Blažek, D., Neslušan, M., Mičica, M., Pištora, J.: Extraction of Barkhausen noise from the measured raw signal in high-frequency regimes. Measurement 94, 456–463 (2016). https://doi.org/10.1016/j.measurement.2016.08.022

    Article  Google Scholar 

  13. White, S., Krause, T., Clapham, L.: Control of flux in magnetic circuits for Barkhausen noise measurements. Meas. Sci. Technol. 18, 3501–3510 (2007). https://doi.org/10.1088/0957-0233/18/11/034

    Article  Google Scholar 

  14. Stupakov, A., Perevertov, O., Zablotskii, V.: A system for controllable magnetic measurements of hysteresis and Barkhausen noise. IEEE Trans. Instrum. Meas. 65, 1087–1097 (2016). https://doi.org/10.1109/tim.2015.2494621

    Article  Google Scholar 

  15. Santa-aho, S., Laitinen, A., Sorsa, A., Vippola, M.: Barkhausen noise probes and modelling: a review. J. Nondestr. Eval. 38, 1–11 (2019)

    Article  Google Scholar 

  16. Ducharne, B.: Micromagnetic nondestructive testing barkhausen noise vs other techniques. 223–238 (2020)

  17. Wolter, B., Gabi, Y., Conrad, C.: Nondestructive testing with 3MA—an overview of principles and applications. Appl. Sci. (2019). https://doi.org/10.3390/app9061068

    Article  Google Scholar 

  18. Gabi, Y., Martins, O., Wolter, B., Strass, B.: Combination of electromagnetic measurements and FEM simulations for nondestructive determination of mechanical hardness. AIP Adv. 8, 047502 (2018). https://doi.org/10.1063/1.4993669

    Article  Google Scholar 

  19. Liu, J., Wilson, J., Strangwood, M., Davis, C.L., Peyton, A.: Magnetic characterisation of microstructural feature distribution in P9 and T22 steels by major and minor BH loop measurements. J. Magn. Magn. Mater. 401, 579–592 (2016). https://doi.org/10.1016/j.jmmm.2015.10.075

    Article  Google Scholar 

  20. Fillion, G., Lord, M., Bussière, J.: Coercivity measurement from analysis of the tangential magnetic field. 223–230 (1991). https://doi.org/10.1007/978-1-4899-0670-0\_27

  21. Liu, X., Shang, W., He, C., Zhang, R., Wu, B.: Simultaneous quantitative prediction of tensile stress, surface hardness and case depth in medium carbon steel rods based on multifunctional magnetic testing techniques. Measurement 128, 455–463 (2018). https://doi.org/10.1016/j.measurement.2018.04.044

    Article  Google Scholar 

  22. Honkanen, M., Santa-aho, S., Laurson, L., Eslahi, N., Foi, A., Vippola, M.: Mimicking Barkhausen noise measurement by in-situ transmission electron microscopy—effect of microstructural steel features on Barkhausen noise. Acta Mater. 221, 117378 (2021). https://doi.org/10.1016/j.actamat.2021.117378

    Article  Google Scholar 

  23. Send, S., Dapprich, D., Thomas, J., Suominen, L.: Non-destructive case depth determination by means of low-frequency Barkhausen noise measurements. J. Nondestr. Eval. 37, 1–10 (2018)

    Article  Google Scholar 

  24. Neslušan, M., Minárik, P., Čilliková, M., Kolařík, K., Rubešová, K.: Barkhausen noise emission in tool steel X210Cr12 after semi-solid processing. Mater. Charact. 157, 109891 (2019). https://doi.org/10.1016/j.matchar.2019.109891

    Article  Google Scholar 

  25. Szielasko, K., Mironenko, I., Altpeter, I., Herrmann, H.-G., Boller, C.: Minimalistic devices and sensors for micromagnetic materials characterization. IEEE Trans. Magn. 49, 101–104 (2013). https://doi.org/10.1109/TMAG.2012.2217943

    Article  Google Scholar 

  26. Maciusowicz, M., Psuj, G.: Use of time-frequency representation of magnetic Barkhausen noise for evaluation of easy magnetization axis of grain-oriented steel. Materials. (2020). https://doi.org/10.3390/ma13153390

    Article  Google Scholar 

  27. Tomkowski, R., Sorsa, A., Santa-aho, S., Lundin, P., Vippola, M.: Statistical evaluation of Barkhausen noise testing (BNT) for ground samples. Sensors (2019). https://doi.org/10.3390/s19214716

    Article  Google Scholar 

  28. Stupakov, O., Pal’a, J., Takagi, T., Uchimoto, T.: Governing conditions of repeatable Barkhausen noise response. J. Magn. Magn. Mater. 321, 2956–2962 (2009). https://doi.org/10.1016/j.jmmm.2009.04.065

    Article  Google Scholar 

  29. Hang, C., Liu, W., Wang, P.: A method of Barkhausen noise feature extraction based on an adaptive threshold. Appl. Sci. 9, 2964 (2019)

    Article  Google Scholar 

  30. Rousseeuw, P.J., Croux, C.: Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88, 1273–1283 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key Research and Development Program of China (Grant No. 2018YFB2003304), in part by National Natural Science Foundation of China (Grant No. 61871218), in part by National Key Research and Development Program of China (Grant Nos. 2018YFB2100903, 2017YFF0107304, 2017YFF0209700), and in part by Fundamental Research Funds for the Central Universities (Grant Nos. NJ2019007, NJ2020014).

Author information

Authors and Affiliations

Authors

Contributions

CH: conceptualization, methodology, software, writing—original draft. WL: supervision, writing—review & editing. GD: methodology, writing—review & editing. WC: writing—review & editing. LL: methodology, validation. PW: funding acquisition, supervision. YL: validation. HZ: supervision. KL: supervision.

Corresponding author

Correspondence to Cheng Hang.

Ethics declarations

Competing interests

The authors declared that they have no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, C., Liu, W., Dobmann, G. et al. Abnormal Signals Elimination in Hardness Evaluation Using Barkhausen Noise and Tangential Magnetic Field. J Nondestruct Eval 42, 15 (2023). https://doi.org/10.1007/s10921-023-00924-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-00924-2

Keywords

Navigation