Skip to main content
Log in

Impact-Delamination Detection in Repaired-Composite Laminates Using Numerical and Ultrasonic Method

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Adhesively bonded external composite patch repairs are one of the most common types of repairs. The shape and form of the damage in the repaired composite and the limits of this damage are interesting topics for researchers. In this direction, the detection of the damage in the patch and damaged main material can be determined by various methods. This study aims to investigate the impact delamination behavior of composite laminates repaired by external patches by using 3D finite element analysis and ultrasonic testing (UT). The non-destructive testing method is preferred for the actual delamination damage caused and the accuracy of the proposed numerical model. The proposed numerical model estimated delamination damage by degrading to material constants according to the delamination damage criterion. UT consisting of pulse-echo and through-transmission (TT) technique was evaluated under different ambient temperatures. These ambient temperatures were chosen due to field and laboratory conditions. Numerical analysis of patched-composites was carried out by using ABAQUS-PYTHON scripting language with VUMAT and 3D Hashin shear and delamination damage model. The effect of the material and thickness of the composite patch affecting the delamination damage under impact was also investigated in order to precisely determine the accuracy of the ultrasonic methods and the proposed numerical model. The damage areas and regions at the top (patch) and bottom (damaged composite plate) faces of the patched composite specimen were in good agreement. Numerical analysis results correctly predicted the delamination areas. The use of patches increased the peak contact force (glass fiber and carbon fiber, respectively) in the unpatched damaged composite by 11\(\%\) and 18\(\%\). The patch material change (from glass fiber to carbon fiber) increased the peak contact force by 6\(\%\). With the increase in patch thickness (glass fiber and carbon fiber, respectively), the peak contact force was increased by 21 and 15\(\%\). Ultrasonic scanning results show that the through-transmission technique is more successful in detecting damage to the back of the plates (volumetric damages), and the pulse-echo technique is more successful in detecting damage to the impact surface of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tamborrino, R., Palumbo, D., Galietti, U., Aversa, P., Chiozzi, S., Luprano, V.A.M.: Assessment of the effect of defects on mechanical properties of adhesive bonded joints by using non destructive methods. Composites B 91, 337–345 (2016)

    Article  Google Scholar 

  2. Cheng, L., Tian, G.Y.: Comparison of nondestructive testing methods on detection of delaminations in composites. J. Sens. 1–7 (2012)

  3. Sojasi, S., Khodayar, F., Lopez, F., Ibarra-Castando, C., Maldague, X., Vavilov, V.P., Chulkov, A.O.: Infrared testing of CFRP components: comparisons of approaches using the tanimoto criterion. In: NDT in Canada (2015)

  4. Liu, B., Zhang, H., Fernandes, H., Maldague, X.: Quantitative evaluation of pulsed thermography, lock-in thermography and vibrothermography on foreign object defect (fod) in cfrp. Sensors (Switzerland) 16(5), 00 (2016)

    Google Scholar 

  5. Swiderski, W., Hlosta, P.: Non-destructive evaluation of impacted CFRP by IR thermography. Materials (Basel) 12(6), 956 (2019)

    Article  Google Scholar 

  6. Li, Y., Zhang, W., Yang, Z., Zhang, J., Tao, S.: Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography. Infrared Phys. Technol. 76, 91–102 (2016)

    Article  Google Scholar 

  7. Meola, C., Carlomagno, G.M.: Impact damage in GFRP: new insights with infrared thermography. Composites A 41(12), 1839–1847 (2010)

    Article  Google Scholar 

  8. Safri, S.N.A., Sultan, M.T.H., Yidris, N., Mustapha, F.: Low velocity and high velocity impact test on composite materials—a review. Int. J. Eng. Sci. 3(9), 50–60 (2014)

    Google Scholar 

  9. Yang, B., Huang, Y., Cheng, L.: Defect detection and evaluation of ultrasonic infrared thermography for aerospace CFRP composites. Infrared Phys. Technol. 60, 166–173 (2013)

    Article  Google Scholar 

  10. Gaudenzi, P., Bernabei, M., Dati, E., De Angelis, G., Marrone, M., Lampani, L.: On the evaluation of impact damage on composite materials by comparing different NDI techniques. Compos. Struct. 118, 257–266 (2014)

    Article  Google Scholar 

  11. Zhanga, H., Genest, M., Robitaillec, F., Maldaguea, X., West, L., Joncas, S., Leducd, C.: Infrared thermography and ultrasound c-scan for non-destructive evaluation of 3d carbon fiber materials: a comparative study. In: Thermosense: Thermal Infrared Applications XXXVII, vol. 94850 (2015)

  12. Amenabar, I., Mendikute, A., López-Arraiza, A., Lizaranzu, M., Aurrekoetxea, J.: Comparison and analysis of non-destructive testing techniques suitable for delamination inspection in wind turbine blades. Composites B 42(5), 1298–1305 (2011)

    Article  Google Scholar 

  13. Maio, L., Memmolo, V., Boccardi, S., Meola, C., Ricci, F., Boffa, N.D., Monaco, E.: Ultrasonic and IR thermographic detection of a defect in a multilayered composite plate. Procedia Eng. 167, 71–79 (2016)

    Article  Google Scholar 

  14. Gholizadeh, S.: A review of non-destructive testing methods of composite materials. Procedia Struct. Integrity 1, 50–57 (2016), XV Portugese Conference on Fracture, PCF 2016, 10-12 February 2016, Paco de Arcos, Portugal

  15. Krishna, S.H., Kumar, A., Karthikeyan, P.P., Abilash, M.P., Narayanankutty, N., Sunil Kumar, G., Usha, K.M., Rakesh, S.: Pulsed thermography and ultrasonic non-destructive evaluation of corrugated metallic thermal protection system (MTPS) panel. In: Advances in Metallic Materials and Manufacturing Processes for Strategic Sectors. Materials Science Forum, vol 710, pp. 594–599. Trans Tech Publications Ltd (2012)

  16. Balageas, D., Maldague, X., Burleigh, D., Vavilov, V.P., Oswald-Tranta, B., Roche, J.-M., Pradere, C., Carlomagno, G.M.: Thermal (IR) and other NDT techniques for improved material inspection. J. Nondestr. Eval. 35(1), 18 (2016)

    Article  Google Scholar 

  17. Duan, Y., Zhang, H., Maldague, X.P.V., Ibarra-Castanedo, C., Servais, P., Genest, M., Sfarra, S., Meng, J.: Reliability assessment of pulsed thermography and ultrasonic testing for impact damage of CFRP panels. NDT E Int. 102, 77–83 (2019)

    Article  Google Scholar 

  18. de Castro, D.S.V., Matvieieva, N., Grosso, M., Camerini, C.G., Kotik, H.G., Heuer, H.: Evaluation of mode II delamination area by non-destructive techniques: accuracy and influence on fracture toughness calculation. J. Nondestr. Eval. 40(3), 58 (2021)

    Article  Google Scholar 

  19. Schmutzler, H., Garcia, A., Sato, N., Wittich, H., Nishikawa, M., Rohling, H., Hojo, M., Schulte, K., Fiedler, B.: Influence of delamination characteristics in carbon fibre/epoxy laminates on signal features of pulse thermography. J. Nondestr. Eval. 34(1), 5 (2014)

    Article  Google Scholar 

  20. Montinaro, N., Cerniglia, D., Pitarresi, G.: A numerical study on interlaminar defects characterization in fibre metal laminates with flying laser spot thermography. J. Nondestr. Eval. 37(3), 41 (2018)

    Article  Google Scholar 

  21. Shoja, S., Berbyuk, V., Boström, A.: Delamination detection in composite laminates using low frequency guided waves: numerical simulations. Compos. Struct. 203, 826–834 (2018)

    Article  Google Scholar 

  22. Vavilov, V.P., Burleigh, D.D.: Review of pulsed thermal NDT: physical principles, theory and data processing. NDT E Int. 73, 28–52 (2015)

    Article  Google Scholar 

  23. Caminero, M.A., Garcia-Moreno, I., Rodriguez, G.P., Chacon, J.M.: Internal damage evaluation of composite structures using phased array ultrasonic technique: impact damage assessment in cfrp and 3d printed reinforced composites. Composites B 165, 131–142 (2019)

    Article  Google Scholar 

  24. Kersemans, M., Verboven, E., Segers, J., Hedayatrasa, S., Van Paepegem, W.: Non-destructive testing of composites by ultrasound, local defect resonance and thermography. In: Proceedings ICEM 2018, vol. 2, MDP I (2018)

  25. Kim, G., Hong, S., Jhang, K.-Y., Kim, G.H.: NDE of low-velocity impact damages in composite laminates using ESPI, digital shearography and ultrasound c-scan techniques. Int. J. Precis. Eng. Manuf. 13(6), 869–876 (2012)

    Article  Google Scholar 

  26. Katunin, A., Dragan, K., Dziendzikowski, M.: Damage identification in aircraft composite structures: a case study using various non-destructive testing techniques. Compos. Struct. 127, 1–9 (2015)

    Article  Google Scholar 

  27. Kazys, R., Demcenko, A., Zukauskas, E., Mazeika, L.: Air-coupled ultrasonic investigation of multi-layered composite materials. Ultrasonics 44, e819–e822 (2006)

    Article  Google Scholar 

  28. Papa, I., Lopresto, V., Simeoli, G., Langella, A., Russo, P.: Ultrasonic damage investigation on woven jute/poly (lactic acid) composites subjected to low velocity impact. Composites B 115, 282–288 (2017)

    Article  Google Scholar 

  29. Ahmed, A., Mohmmed, R., Bingjie, Z., Wei, L.: Noncontact inspection of impact damage properties of woven fabric-reinforced composites after low-velocity impact by using air-coupled ultrasonic technique. J. Ind. Text. 46(3), 809–832 (2016)

    Article  Google Scholar 

  30. Abaqus/Explicit (version 6.14), User’s manual, finite element software. http://www.simulia.com

  31. Ultrasonar Defense and Aviation Technologies Inc.: US DSA deep structure analyzer, automated immersion type ultrasonic scanning system (2020)

  32. Ultrasonar Defense and Aviation Technologies Inc.: 2020, US 1000, ultrasonic pulser receiver automated immersion type ultrasonic scanning and digitizer unit (2020)

  33. Yildiz, F., Ozdemir, A.T., Uluisik, S.: Custom design fruit quality evaluation system with non-destructive testing (NDT) techniques. In: 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), pp. 1–5 (2018)

  34. Yildiz, F., Ozdemir, A.T., Uluisik, S.: Evaluation performance of ultrasonic testing on fruit quality determination. J. Food Qual. 6810865, 7 (2019)

    Google Scholar 

  35. David, J., Cheeke, N.: Fundamentals and Applications of Ultrasonic Waves. CRC Press, Boca Raton (2002)

    Google Scholar 

  36. Briggs, A.: Acoustic Microscopy. Clarendon Press, Oxford (1992)

    Google Scholar 

  37. Gavrilov, D., Maev, R.G., Almond, D.P.: A review of imaging methods in analysis of works of art: thermographic imaging method in art analysis. Can. J. Phys. 92(4), 341–364 (2014)

    Article  Google Scholar 

  38. Rogers, P.H., Van Buren, A.L.: An exact expression for the Lommel-diffraction correction integral. J. Acoust. Soc. Am. 55, 724–728 (1974)

    Article  Google Scholar 

  39. Rodrigoa, G., Angel, M.: The ultrasonic pulse-echo immersion technique and attenuation coefficient of particulate composites. Master’s thesis, University of Rhode Island, Mechanical, Industrial and Systems Engineering (2013)

  40. Berke, M.: Nondestructive Material Testing with Ultrasonics—Introduction to the Basic Principles. Krautkamer GmbH & Company, Cologne (1996)

    Google Scholar 

  41. Wronkowicz, A., Dragan, K., Lis, K.: Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures. Compos. Struct. 203, 71–84 (2018)

    Article  Google Scholar 

  42. Stenström, C.: Diffuse ultrasonic scattering in advanced composites. Master’s thesis, University of Nebraska-Lincoln (2010)

  43. Martinez, R., Leija, L., Vera, A.: Ultrasonic attenuation in pure water: comparison between through-transmission and pulse-echo techniques. In: 2010 Pan American Health Care Exchanges, pp. 81–84 (2010)

  44. Mix, P.E.: Introduction to Nondestructive Testing: A Training Guide. Wiley, New York (1987)

    Google Scholar 

  45. Kas, O., Kaynak, C.: Ultrasonic (c-scan) and microscopic evaluation of resin transfer molded epoxy composite plates. Polym. Test. 24(1), 114–120 (2005)

    Article  Google Scholar 

  46. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)

    Article  Google Scholar 

  47. Kapti, S., Sayman, O., Ozen, M., Benli, S.: Experimental and numerical failure analysis of carbon/epoxy laminated composite joints under different conditions. Mater. Des. 31(10), 4933–4942 (2010)

    Article  Google Scholar 

  48. Namala, K.K., Mahajan, P., Bhatnagar, N.: Digital image correlation of low-velocity impact on a glass/epoxy composite. Int. J. Comput. Methods Eng. Sci. Mech. 15(3), 203–217 (2014)

    Article  Google Scholar 

  49. Caliskan, U., Apalak, M.K.: Low speed impact behaviour of adhesively bonded foam-core sandwich t-joints. J. Adhes. Sci. Technol. 33(3), 217–242 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Caliskan.

Ethics declarations

Conflict of interest

The authors have no conficts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caliskan, U., Yildiz, F., Teke, S. et al. Impact-Delamination Detection in Repaired-Composite Laminates Using Numerical and Ultrasonic Method. J Nondestruct Eval 41, 48 (2022). https://doi.org/10.1007/s10921-022-00878-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-022-00878-x

Keywords

Navigation