Skip to main content
Log in

Implementation of Supervised Classification Method of Acoustic Emission Signals: Damage Mechanisms Identification of Non-hybrid and Hybrid Flax Fibre Composites

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In the present work, a classification approach of acoustic emission (AE) signals that combines unsupervised and supervised methods was presented to investigate damage mechanisms in hybrid fibres reinforced epoxy composites. These ends were elaborated by hybridising unidirectional (UD) flax and glass fibres and by using a vacuum infusion technique. First, specific tensile tests of various UD flax and glass fibres specimens were coupled with AE monitoring. This enables us to construct different datasets of unlabelled AE signals. Then, a clustering method, named incremental clustering (IC), was used to assign each AE signal with a typical damage mechanism according to its characteristic features. The decision rule of the IC was based on the principle of support vector data description (SVDD). The IC allowed the building of a training database that includes AE signals of five damage mechanisms, namely matrix cracking, flax fibre-matrix debonding, glass fibre matrix debonding, flax fibre breakage, and glass fibre breakage. Finally, the training database was coupled with the Support Vector Machines (SVM) classifier to identify the damage mechanisms of two hybrid flax-glass fibre composites. The experimental results indicate that the classifier model can predict the damage mechanisms with an accuracy of 93.13%. In conclusion, the proposed classification approach proved promising to investigate the damage mechanisms of hybrid composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pickering, K.L., Efendy, M.G.A., Le, T.M.: A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part Appl. Sci. Manuf. 83, 98–112 (2016). https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  Google Scholar 

  2. Faruk, O., Bledzki, A.K., Fink, H.-P., Sain, M.: Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 299(1), 9–26 (2014). https://doi.org/10.1002/mame.201300008

    Article  Google Scholar 

  3. Yan, L., Kasal, B., Huang, L.: A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composite B 92, 94–132 (2016). https://doi.org/10.1016/j.compositesb.2016.02.002

    Article  Google Scholar 

  4. Saidane, E.H., Scida, D., Assarar, M., Sabhi, H., Ayad, R.: Hybridisation effect on diffusion kinetic and tensile mechanical behaviour of epoxy based flax–glass composites. Compos. Part Appl. Sci. Manuf. 87, 153–160 (2016). https://doi.org/10.1016/j.compositesa.2016.04.023

    Article  Google Scholar 

  5. Swolfs, Y., Verpoest, I., Gorbatikh, L.: Recent advances in fibre-hybrid composites: materials selection, opportunities and applications. Int. Mater. Rev. 64(4), 181–215 (2019). https://doi.org/10.1080/09506608.2018.1467365

    Article  Google Scholar 

  6. Li, Y., Yi, X., Yu, T., Xian, G.: An overview of structural-functional-integrated composites based on the hierarchical microstructures of plant fibers. Adv. Compos. Hybrid Mater. 1(2), 231–246 (2018). https://doi.org/10.1007/s42114-017-0020-3

    Article  Google Scholar 

  7. Dashtizadeh, Z., et al.: Mechanical and thermal properties of natural fibre based hybrid composites: a review. Pertanika J. Sci. Technol. 25(4), 1103–1122 (2017)

    Google Scholar 

  8. Saidane, E.H., Scida, D., Assarar, M., Ayad, R.: Damage mechanisms assessment of hybrid flax-glass fibre composites using acoustic emission. Compos. Struct. 174, 1–11 (2017). https://doi.org/10.1016/j.compstruct.2017.04.044

    Article  Google Scholar 

  9. Saidane, E.H., Scida, D., Pac, M.-J., Ayad, R.: Mode-I interlaminar fracture toughness of flax, glass and hybrid flax-glass fibre woven composites: failure mechanism evaluation using acoustic emission analysis. Polym. Test. 75, 246–253 (2019). https://doi.org/10.1016/j.polymertesting.2019.02.022

    Article  Google Scholar 

  10. M. Ben Ameur et al., “Investigation and identification of damage mechanisms of unidirectional carbon/flax hybrid composites using acoustic emission,” Eng. Fract. Mech., vol. 216, p. 106511, Jul. 2019, doi: https://doi.org/10.1016/j.engfracmech.2019.106511.

  11. Saeedifar, M., Zarouchas, D.: Damage characterization of laminated composites using acoustic emission: a review. Composite B 195, 108039 (2020). https://doi.org/10.1016/j.compositesb.2020.108039

    Article  Google Scholar 

  12. Panek, M., Blazewicz, S., Konsztowicz, K.J.: Correlation of acoustic emission with fractography in bending of glass-epoxy composites. J. Nondestruct. Eval. 39(3), 63 (2020). https://doi.org/10.1007/s10921-020-00706-0

    Article  Google Scholar 

  13. Pashmforoush, F., Khamedi, R., Fotouhi, M., Hajikhani, M., Ahmadi, M.: Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm. J. Nondestruct. Eval. 33(4), 481–492 (2014). https://doi.org/10.1007/s10921-014-0243-y

    Article  Google Scholar 

  14. Han, W., Gu, A., Zhou, J.: A Damage modes extraction method from AE signal in composite laminates based on DEEMD. J. Nondestruct. Eval. 38(3), 70 (2019). https://doi.org/10.1007/s10921-019-0609-2

    Article  Google Scholar 

  15. Saravanakumar, K., Lakshminarayanan, B.S., Arumugam, V.: Effect of thickness and denting behavior of glass/epoxy laminates subjected to quasi-static indentation (QSI) loading under acoustic emission monitoring. J. Nondestruct. Eval. 37(3), 63 (2018). https://doi.org/10.1007/s10921-018-0519-8

    Article  Google Scholar 

  16. Ding, P., Li, Q., Huang, X.: Classification of acoustic emission sources produced by carbon/epoxy composite based on support vector machine. IOP Conf. Ser. Mater. Sci. Eng. 87, 012002 (2015). https://doi.org/10.1088/1757-899X/87/1/012002

    Article  Google Scholar 

  17. Saeedifar, M., Saleh, M.N., De Freitas, S.T., Zarouchas, D.: Damage characterization of adhesively-bonded Bi-material joints using acoustic emission. Compos. Part B Eng. 176, 107356 (2019). https://doi.org/10.1016/j.compositesb.2019.107356

    Article  Google Scholar 

  18. Satour, A., Montrésor, S., Bentahar, M., Boubenider, F.: Wavelet based clustering of acoustic emission hits to characterize damage mechanisms in composites. J. Nondestruct. Eval. 39(2), 37 (2020). https://doi.org/10.1007/s10921-020-00678-1

    Article  Google Scholar 

  19. Ech-Choudany, Y., Assarar, M., Scida, D., Morain-Nicolier, F., Bellach, B.: Unsupervised clustering for building a learning database of acoustic emission signals to identify damage mechanisms in unidirectional laminates. Appl. Acoust. 123, 123–132 (2017). https://doi.org/10.1016/j.apacoust.2017.03.008

    Article  Google Scholar 

  20. Chilali, A., Zouari, W., Assarar, M., Kebir, H., Ayad, R.: Analysis of the mechanical behaviour of flax and glass fabrics-reinforced thermoplastic and thermoset resins. J. Reinf. Plast. Compos. 35(16), 1217–1232 (2016). https://doi.org/10.1177/0731684416645203

    Article  Google Scholar 

  21. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004). https://doi.org/10.1023/B:MACH.0000008084.60811.49

    Article  MATH  Google Scholar 

  22. Wang, J., Lu, H., Plataniotis, K.N., Lu, J.: Gaussian kernel optimization for pattern classification. Pattern Recognit. 42(7), 1237–1247 (2009). https://doi.org/10.1016/j.patcog.2008.11.024

    Article  MATH  Google Scholar 

  23. Maillet, E., Baker, C., Morscher, G.N., Pujar, V.V., Lemanski, J.R.: Feasibility and limitations of damage identification in composite materials using acoustic emission. Compos. Part Appl. Sci. Manuf. 75, 77–83 (2015). https://doi.org/10.1016/j.compositesa.2015.05.003

    Article  Google Scholar 

  24. Cheour, K., Assarar, M., Scida, D., Ayad, R., Gong, X.-L.: Long-term immersion in water of flax-glass fibre hybrid composites: effect of stacking sequence on the mechanical and damping properties. Fibers Polym. 21(1), 162–169 (2020). https://doi.org/10.1007/s12221-020-9494-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ech-Choudany.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ech-Choudany, Y., Scida, D., Assarar, M. et al. Implementation of Supervised Classification Method of Acoustic Emission Signals: Damage Mechanisms Identification of Non-hybrid and Hybrid Flax Fibre Composites. J Nondestruct Eval 41, 19 (2022). https://doi.org/10.1007/s10921-022-00850-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-022-00850-9

Keywords

Navigation