Skip to main content
Log in

Transfer Component Analysis for Compensation of Temperature Effects on the Impedance-Based Structural Health Monitoring

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The effects of temperature fluctuations in the impedance measurements’ spectral estimates confuse the procedures to distinguish actual states’ classification, demanding compensation. The present paper demonstrates a new method to achieve temperature compensation based on a Transfer Component Analysis (TCA), a subtype of transfer learning, of the features from a source domain (in a well-known labeled condition) to another target domain (in an unknown condition). This procedure assumes only the labeled features data in the healthy condition (baseline) and damaged state in a specific known temperature as source data. The features computed are the Root Mean Square Deviation (RMSD) indices of the real and imaginary impedance signals. A machine-learning algorithm based on Mahalanobis squared distance (\(\mathcal D^{2}\)) is trained using the features computed from the baseline condition in the reference temperature. Also, the other temperature and structural conditions data are assumed as testing data of the target condition. TCA’s main idea is mapping the features from the original features space to a new subspace where the detection becomes possible using the same training data in the source domain. The results performed in a testbench with a piezoelectric element (PZT) bonded under a set of temperatures monitored, and simulated damage confirmed that the proposed method could recognize the real states correctly by transferring the knowledge from the features of the source domain into the target domain, assuming different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. https://github.com/shm-unesp/PAMELA.

References

  1. Annamdas, V.G.M., Soh, C.K.: Application of electromechanical impedance technique for engineering structures: review and future issues. J. Intell. Mater. Syst. Struct. 21(1), 41–59 (2010). https://doi.org/10.1177/1045389X09352816

    Article  Google Scholar 

  2. Baptista, F.G., Budoia, D., Jose Ulson, V.A.: Experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring. Sensors 14, 1208–1227 (2014). https://doi.org/10.3390/s140101208

    Article  Google Scholar 

  3. Baptista, F.G., Filho, J.V.: A new impedance measurement system for pzt-based structural health monitoring. IEEE Trans. Instrum. Meas. 58(10), 3602–3608 (2009)

    Article  Google Scholar 

  4. Chicco, D., Jurman, G.: The advantages of the matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 6 (2020). https://doi.org/10.1186/s12864-019-6413-7

    Article  Google Scholar 

  5. Choy, A.: Structural health monitoring with deep learning. In: Proceedings of the International Multi Conference of Engineers and Computer Scientists (2018)

  6. Cortez, N.E., Filho, J.V., Baptista, F.G.: A new microcontrolled structural health monitoring system based on the electromechanical impedance principle. Struct. Health Monit. 12(1), 14–22 (2013). https://doi.org/10.1177/1475921712461163

    Article  Google Scholar 

  7. De Oliveira, M.A., Monteiro, A.V., Vieira Filho, J.: A new structural health monitoring strategy based on pzt sensors and convolutional neural network. Sensors 18(9), 2955 (2018)

    Article  Google Scholar 

  8. de Souza Campos, D., de Castro, B.A., Budoya, D.E., Baptista, F.G., Ulson, J.A.C., Andreoli, A.L.: Feature extraction approach insensitive to temperature variations for impedance-based structural health monitoring. IET Sci. Meas. Technol. 13(4), 536–543 (2019). https://doi.org/10.1049/iet-smt.2018.5226

    Article  Google Scholar 

  9. Figueiredo, E., Park, G., Figueiras, J., Farrar, C., Worden, K.: Structural health monitoring algorithm comparisons using standard data sets. Tech. Rep., Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2009)

  10. Gardner, P., Liu, X., Worden, K.: On the application of domain adaptation in structural health monitoring. Mech. Syst. Signal Process. 138, 106550 (2020). https://doi.org/10.1016/j.ymssp.2019.106550

    Article  Google Scholar 

  11. Garla, V., Taylor, C., Brandt, C., Brandt, C.: Semi-supervised clinical text classification with laplacian svms: an application to cancer case management. J. Biomed. Inform. 46(5), 869–875 (2013). https://doi.org/10.1016/j.jbi.2013.06.014

    Article  Google Scholar 

  12. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) Advances in Information Retrieval, pp. 345–359. Springer, Berlin (2005)

    Chapter  Google Scholar 

  13. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Grubinger, T., Birlutiu, A., Schöner, H., Natschläger, T., Heskes, T.: Domain generalization based on transfer component analysis. In: Rojas, I., Joya, G., Catala, A. (eds.) Advances in Computational Intelligence, pp. 325–334. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  15. Han, T., Liu, C., Yang, W., Jiang, D.: Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application. ISA Trans. 97, 269–281 (2020). https://doi.org/10.1016/j.isatra.2019.08.012

    Article  Google Scholar 

  16. Harmouche, J., Delpha, C., Diallo, D.: Incipient fault detection and diagnosis based on Kullback Leibler divergence using principal component analysis: part I. Signal Process. (2014). https://doi.org/10.1016/j.sigpro.2013.05.018

    Article  Google Scholar 

  17. Koo, K.Y., Park, S., Lee, J.J., Yun, C.B.: Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects. J. Intell. Mater. Syst. Struct. 20(4), 367–377 (2009). https://doi.org/10.1177/1045389X08088664

    Article  Google Scholar 

  18. Liang, C., Sun, F., Rogers, C.: Coupled electro-mechanical analysis of adaptive material systems, determination of the actuator power consumption and system energy transfer. J. Intell. Mater. Syst. Struct. 5(1), 12–20 (1994). https://doi.org/10.1177/1045389X9400500102

    Article  Google Scholar 

  19. Liu, X., Worden, K.: On the application of domain adaptation in SHM. In: Dervilis, N. (ed.) Special Topics in Structural Dynamics & Experimental Techniques, vol. 5, pp. 111–122. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  20. Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G.: Transfer learning using computational intelligence: a survey. Knowl. Based Syst. 80, 14–23 (2015). https://doi.org/10.1016/j.knosys.2015.01.010

    Article  Google Scholar 

  21. Matasci, G., Volpi, M., Kanevski, M., Bruzzone, L., Tuia, D.: Semisupervised transfer component analysis for domain adaptation in remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 53(7), 3550–3564 (2015)

    Article  Google Scholar 

  22. Mou, L., Meng, Z., Yan, R., Li, G., Xu, Y., Zhang, L., Jin, Z.: How transferable are neural networks in nlp applications? arXiv preprint arXiv:1603.06111 (2016)

  23. Ng, H.W., Nguyen, V.D., Vonikakis, V., Winkler, S.: Deep learning for emotion recognition on small datasets using transfer learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, ICMI ’15, pp. 443–449. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2818346.2830593

  24. Nobari, A.S., Aliabadi, M.H.F.: Vibration-based techniques for damage detection and localization in engineering structures. World Scientific (EUROPE) (2018). https://doi.org/10.1142/q0145

  25. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

  26. Paixão, J., da Silva, S., FIgueiredo, E.: Damage quantification in composite structures using autoregressive models. In: W. M. (ed.) Proceedings of the 13th International Conference on Damage Assessment of Structures. Lecture Notes in Mechanical Engineering. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8331-1_63

  27. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011). https://doi.org/10.1109/TNN.2010.2091281

    Article  Google Scholar 

  28. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  29. Park, G., Kabeya, K., Cudney, H.H., Inman, D.J.: Impedance-based structural health monitoring for temperature varying applications. JSME Int. J. Ser. A 42(2), 249–258 (1999). https://doi.org/10.1299/jsmea.42.249

    Article  Google Scholar 

  30. Park, G., Sohn, H., Farrar, C., Inman, D.: Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib. Digest 35, 451–463 (2003). https://doi.org/10.1177/05831024030356001

    Article  Google Scholar 

  31. Rabelo, D.S., Tsuruta, K.M., de Oliveira, D.D., Cavalini, A.A., Neto, R.M.F., Steffen, V.: Fault detection of a rotating shaft by using the electromechanical impedance method and a temperature compensation approach. J. Nondest. Eval. 36(2), 25 (2017). https://doi.org/10.1007/s10921-017-0405-9

    Article  Google Scholar 

  32. Rubin, T.N., Chambers, A., Smyth, P., Steyvers, M.: Statistical topic models for multi-label document classification. Mach. Learn. 88(1–2), 157–208 (2012). https://doi.org/10.1007/s10994-011-5272-5

    Article  MathSciNet  MATH  Google Scholar 

  33. Schölkopf, B.: The kernel trick for distances. In: Advances in neural information processing systems, pp. 301–307 (2001)

  34. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998). https://doi.org/10.1162/089976698300017467

    Article  Google Scholar 

  35. Shin, H., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  36. de Souza Rabelo, D., Valder Steffen, J., Neto, R.M.F., Lacerda, H.B.: Impedance-based structural health monitoring and statistical method for threshold-level determination applied to 2024–t3 aluminum panels under varying temperature. Struct. Health Monit. 16(4), 365–381 (2017). https://doi.org/10.1177/1475921716671038

    Article  Google Scholar 

  37. Tibaduiza, D.A., Mujica, L.E., Rodellar, J.: Damage classification in structural health monitoring using principal component analysis and self-organizing maps. Struct. Control Health Monit. 20(10), 1303–1316 (2013). https://doi.org/10.1002/stc.1540

    Article  Google Scholar 

  38. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011). https://doi.org/10.1109/TKDE.2010.164

    Article  Google Scholar 

  39. Vicente Lopes, J., Park, G., Cudney, H.H., Inman, D.J.: Impedance-based structural health monitoring with artificial neural networks. J. Intell. Mater. Syst. Struct. 11(3), 206–214 (2000). https://doi.org/10.1106/H0EV-7PWM-QYHW-E7VF

    Article  Google Scholar 

  40. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018). https://doi.org/10.1016/j.neucom.2018.05.083

    Article  Google Scholar 

  41. Xie, J., Zhang, L., Duan, L., Wang, J.: On cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis. In: 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 1–6 (2016). https://doi.org/10.1109/ICPHM.2016.7542845

  42. Xu, B., Xu, G., Xu, C., Luo, Y.: The effect of damage and temperature on electrical impedance of the PZT-beam coupled structure. J. Vibroeng. 18(6), 3557–3567 (2016). https://doi.org/10.21595/jve.2016.16767

    Article  Google Scholar 

  43. Ye, R., Dai, Q.: A novel transfer learning framework for time series forecasting. Knowl. Based Syst. 156, 74–99 (2018). https://doi.org/10.1016/j.knosys.2018.05.021

    Article  Google Scholar 

  44. Yu, Y., Szepesvári, C.: Analysis of kernel mean matching under covariate shift. arXiv preprint arXiv:1206.4650 (2012)

  45. Zhou, D., Kim, J.K., Ha, D.S., Quesenberry, J.D., Inman, D.J.: A system approach for temperature dependency of impedance-based structural health monitoring. In: Smart Sensor Phenomena, Technology, Networks, and Systems 2009, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7293, p. 72930U (2009). https://doi.org/10.1117/12.816285

  46. Zhou, J.T., Pan, S.J., Tsang, I.W., Ho, S.S.: Transfer learning for cross-language text categorization through active correspondences construction. In: AAAI, pp. 2400–2406 (2016)

Download references

Acknowledgements

The authors thank Dr. Fabricio Guimarães Baptista for technical support on the National Instruments DAQ device and LabView software utilized in our experimental tests. The authors also acknowledge the suggestions given by ad hoc reviewers and the Associate Editor.

Funding

The authors thank the financial support provided by Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES/Brasil)-Finance Code 001 and Grant-Number 88882.433643/2019-01, and the Brazilian National Council for Scientific and Technological Development (CNPq) Grant Number 306526/2019-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, S.d., Yano, M.O. & Gonsalez-Bueno, C.G. Transfer Component Analysis for Compensation of Temperature Effects on the Impedance-Based Structural Health Monitoring. J Nondestruct Eval 40, 64 (2021). https://doi.org/10.1007/s10921-021-00794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00794-6

Keywords

Navigation