Skip to main content
Log in

Direct Iterative Basis Image Reconstruction Based on MAP-EM Algorithm for Spectral CT

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Spectral CT can separate basis materials, and thus it can provide information on material characterization and quantification. Such information can benefit various clinical applications. However, the presence of non-ideal effects in X-ray imaging systems limits the accuracy of basis images. To achieve high accuracy of material decomposition and high quality of basis images, a novel direct iterative basis material image reconstruction based on maximum a posteriori expectation–maximization algorithm (MAP-EM-DD) is proposed. Furthermore, by incorporating polar coordinate transformation into MAP-EM-DD, MAP-EM-PT-DD is proposed. The iterative formulas of MAP-EM-DD and MAP-EM-PT-DD are derived. To evaluate the proposed methods, a simulated cylinder phantom with inserts that contain polyethylene, hydroxyapatite, salt water, air, and aluminum is established. The methods are quantitatively evaluated for comparative studies. Results show that the proposed methods can remarkably reduce the noise of basis images and error of material decomposition and improve the contrast-to-noise ratios (CNRs) of each material-specific region. Compared with the image domain material decomposition based on FBP algorithm (FBP-IDD), MAP-EM-DD can reduce the noise levels of basis images ranging from 57.4 to 63.6% and the error levels of each material-specific region from 31.7 to 62.1%. Simultaneously, the CNRs of each material-specific region are improved ranging from 63.8 to 237.3%. Compared with MAP-EM-DD, MAP-EM-PT-DD can reduce the noise levels of basis images ranging from 21.4 to 23.6%, the error levels of each material-specific region ranging from 1.9 to 36.3%, and the reconstruction time of basis images by 14.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alvarez, R.E., Macovski, A.: Energy-selective reconstructions in X-ray computerized tomography. Phys. Med. Biol. 21(5), 733–744 (1976). https://doi.org/10.1088/0031-9155/21/5/002

    Article  Google Scholar 

  2. Sidky, E.Y., Zou, Y., Pan, X.: Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods. Phys. Med. Biol. 49(11), 2293–2303 (2004). https://doi.org/10.1088/0031-9155/49/11/012

    Article  Google Scholar 

  3. Thieme, S.F., Graute, V., Nikolaou, K., Maxien, D., Johnson, T.R.C.: Dual energy ct lung perfusion imaging–correlation with SPECT/CT. Eur. J. Radiol. 81(2), 360–365 (2010). https://doi.org/10.1016/j.ejrad.2010.11.037

    Article  Google Scholar 

  4. Lambert, J.W., Sun, Y., Gould, R.G., Ohliger, M.A., Li, Z., Yeh, B.M.: An image-domain contrast material extraction method for dual-energy computed tomography. Invest. Radiol. 52(4), 245–254 (2017). https://doi.org/10.1097/RLI.0000000000000335

    Article  Google Scholar 

  5. Xie, B., Su, T., Kaftandjian, V., Niu, P., Yang, F., Robini, M., Zhu, Y., Duvauchelle, P.: Material decomposition in X-ray spectral CT using multiple constraints in image domain. J. Nondestruct. Eval. 38(1), 16 (2019). https://doi.org/10.1007/s10921-018-0551-8

    Article  Google Scholar 

  6. Maass, C., Baer, M., Kachelriess, M.: Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain. Med. Phys. 36(8), 3818–3829 (2009). https://doi.org/10.1118/1.3157235

    Article  Google Scholar 

  7. Schlomka, J.P., Roessl, E., Dorscheid, R., Dill, S., Martens, G., Istel, T., Bäumer, C., Herrmann, C., Steadman, R., Zeitler, G., Livne, A., Proksa, R.: Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys. Med. Biol. 53(15), 4031–4047 (2008). https://doi.org/10.1088/0031-9155/53/15/002

    Article  Google Scholar 

  8. Sawatzky, A., Xu, Q., Schirra, C.O., Anastasio, M.A.: Proximal ADMM for multi-channel image reconstruction in spectral x-ray CT. IEEE Trans. Med. Imaging 33(8), 1657–1668 (2014). https://doi.org/10.1109/tmi.2014.2321098

    Article  Google Scholar 

  9. Ducros, N., Abascal, J.F.P.J., Sixou, B., Rit, S., Peyrin, F.: Regularization of nonlinear decomposition of spectral x-ray projection images. Med. Phys. 44(9), e174–e187 (2017). https://doi.org/10.1002/mp.12283

    Article  Google Scholar 

  10. Foygel, B.R., Sidky, E.Y., Gilat, S.T., Pan, X.: An algorithm for constrained one-step inversion of spectral CT data. Phys. Med. Biol. 61(10), 3784–3818 (2016). https://doi.org/10.1088/0031-9155/61/10/3784

    Article  Google Scholar 

  11. Mory, C., Sixou, B., Si-Mohamed, S., Boussel, L., Rit, S.: Comparison of five one-step reconstruction algorithms for spectral CT. Phys. Med. Biol. 63, 235001 (2018). https://doi.org/10.1088/1361-6560/aaeaf2

    Article  Google Scholar 

  12. Cai, C., Rodet, T., Legoupil, S., Mohammad-Djafari, A.: A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography. Med. Phys. 40(11), 111916 (2013). https://doi.org/10.1118/1.4820478

    Article  Google Scholar 

  13. Mechlem, K., Ehn, S., Sellerer, T., Braig, E., Munzel, D., Pfeiffer, F., Noël, P.B.: Joint statistical iterative material image reconstruction for spectral computed tomography using a semi-empirical forward model. IEEE Trans. Med. Imaging 37(1), 68–80 (2018). https://doi.org/10.1109/TMI.2017.2726687

    Article  Google Scholar 

  14. Zhou, Z.D., Xin, R.C., Guan, S.L., Li, J.B., Tu, J.L.: Investigation of maximum a posteriori probability expectation-maximization for image-based weighting spectral X-ray CT image reconstruction. J. X-ray Sci. Technol. 26(5), 853–864 (2018). https://doi.org/10.3233/XST-180396

    Article  Google Scholar 

  15. Zhou, Z.D., Guan, S.L., Xin, R.C., Li, J.B.: Investigation of contrast-enhanced subtracted breast CT images with MAP-EM based on projection-based weighting imaging. Aust. Phys. Eng. Sci. Med. 41, 371–377 (2018). https://doi.org/10.1007/s13246-018-0634-y

    Article  Google Scholar 

  16. Maaß, C., Meyer, E., Kachelrieß, M.: Exact dual energy material decomposition from inconsistent rays (MDIR). Med. Phys. 38(2), 691–700 (2011). https://doi.org/10.1118/1.3533686

    Article  Google Scholar 

  17. Chen, Y., Ma, J.H., Feng, Q.J., Luo, L.M., Shi, P.C., Chen, W.F.: Nonlocal prior bayesian tomographic reconstruction. J. Math. Imaging Vis. 30(2), 133–146 (2008). https://doi.org/10.1007/s10851-007-0042-5

    Article  Google Scholar 

  18. Green, P.J.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9(1), 84–93 (1990). https://doi.org/10.1109/42.52985

    Article  Google Scholar 

  19. Brooks, R.A.: A quantitative theory of the Hounsfield unit and its application to dual energy scanning. J. Comput. Assist. Tomo. 1(4), 487–493 (1977). https://doi.org/10.1097/00004728-197710000-00016

    Article  Google Scholar 

  20. Agostinelli, S., Allison, J., Amako, K., et al.: Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 506(3), 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  21. Punnoose, J., Xu, J., Sisniega, A., Zbijewski, W., Siewerdsen, J.H.: Technical note: spektr 3.0-a computational tool for x-ray spectrum modeling and analysis. Med. Phys. 43(8), 4711–4717 (2016). https://doi.org/10.1118/1.4955438

    Article  Google Scholar 

  22. Zhang, G.W., Cheng, J.P., Zhang, L., Chen, Z.Q., Xing, Y.X.: A practical reconstruction method for dual energy computed tomography. J. X-ray Sci. Technol. 16(2), 67–88 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (51575256), Key Research and Development Plan (Social Development) of Jiangsu Province (BE2017730), Key Industrial Research and Development Plan of Chongqing (cstc2017zdcy-zdzxX0007), Shanghai Aerospace Science and Technology Innovation Fund (SAST 2019-121), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengdong Zhou.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhang, X., Xin, R. et al. Direct Iterative Basis Image Reconstruction Based on MAP-EM Algorithm for Spectral CT. J Nondestruct Eval 40, 5 (2021). https://doi.org/10.1007/s10921-020-00736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00736-8

Keywords

Navigation