Skip to main content
Log in

Effect of Water-to-Cement Ratio on Acoustic Nonlinearity of a Hardened Mortar

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

We present the results of experimental and theoretical studies of nonlinear acoustic phenomena (amplitude-dependent losses, resonant frequency shifts, generation of the second and third harmonics of a low-frequency (LF) wave, and self-action of ultrasonic finite-amplitude pulses) in rod resonators made of cement and river sand with various values of water–cement ratios (w/cs; 0.5, 0.6 and 0.9). We have also provided an analytical description of the observed phenomena within the frameworks of the phenomenological equations of state that contain LF hysteretic and high-frequency elastic nonlinearities. By analyzing the experimental and theoretical amplitude dependences of the nonlinear phenomena we determined values of the nonlinearity parameters of test materials. Comparison of changes in the measured nonlinear acoustic and strength properties of these materials demonstrates that an increase in the w/c, which leads to a decrease in the strength of the resulting mortars, also leads to an increase in its acoustic nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nazarov, V.E., Ostrovsky, L.A., Soustova, I.A., Sutin, A.M.: Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth Planet. Interiors 50, 65–73 (1988). https://doi.org/10.1016/0031-9201(88)90094-5

    Article  Google Scholar 

  2. Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete. Wiley, Weinheim (2009)

    Book  Google Scholar 

  3. Nazarov, V., Radostin, A.: Nonlinear Acoustic Waves in Micro-inhomogeneous Solids. Wiley (2015). https://doi.org/10.1002/9781118698334.

    Book  Google Scholar 

  4. Zarembo, L.K., Krasil’nikov, V.A., Shkol’nik, I.E.: Nonlinear acoustics in a problem of diagnosing the strength of solids. Strength Mater. 21(11), 1544–1551 (1989). https://doi.org/10.1007/bf01529410

    Article  Google Scholar 

  5. Van Den Abeele, K., De Visscher, J.: Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem. Concr. Res. 30(9), 1453–1464 (2000). https://doi.org/10.1016/s0008-8846(00)00329-x

    Article  Google Scholar 

  6. Philippidis, T.P., Aggelis, D.G.: An acousto-ultrasonic approach for the determination of water-to-cement ratio in concrete. Cem. Concr. Res. 33, 525–538 (2003). https://doi.org/10.1016/s0008-8846(02)00999-7

    Article  Google Scholar 

  7. Warnemuende, K., Wu, H.-C.: Actively modulated acoustic nondestructive evaluation of concrete. Cem. Concr. Res. 34, 563–570 (2004). https://doi.org/10.1016/j.cemconres.2003.09.008

    Article  Google Scholar 

  8. Shkolnik, I.E.: Effect of nonlinear response of concrete on its elastic modulus and strength. Cem. Concr. Compos. 27(7), 747–757 (2005). https://doi.org/10.1016/j.cemconcomp.2004.12.006

    Article  Google Scholar 

  9. Chen, X.J., Kim, J.-Y., Kurtis, K.E., Qu, J., Shen, C.W., Jacobs, L.J.: Characterization of progressive microcracking in Portland cement mortar using nonlinear ultrasonics. NDT&E Int. 41, 112–118 (2008). https://doi.org/10.1016/j.ndteint.2007.08.009

    Article  Google Scholar 

  10. Shah, A.A., Ribakov, Y.: Non-destructive evaluation of concrete in damaged and undamaged states. Mater. Des. 30(9), 3504–3511 (2009). https://doi.org/10.1016/j.matdes.2009.03.008

    Article  Google Scholar 

  11. Payan, C., Garnier, V., Moysan, J.: Effect of water saturation and porosity on the nonlinear elastic response of concrete. Cem. Concr. Res. 40, 473–476 (2010). https://doi.org/10.1016/j.cemconres.2009.10.021

    Article  Google Scholar 

  12. Chen, J., Jayapalan, A.R., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Rapid evaluation of alkali-silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40, 914–923 (2010). https://doi.org/10.1016/j.cemconres.2010.01.003

    Article  Google Scholar 

  13. Chen, J., Zhang, L.: Experimental study of effects of water–cement ratio and curing time on nonlinear resonance of concrete. Mater. Struct. 48(1–2), 423–433 (2015). https://doi.org/10.1617/s11527-013-0193-3

    Article  Google Scholar 

  14. Chen, J., Xu, Z., Yu, Y., Yao, Y.: Experimental characterization of granite damage using nonlinear ultrasonic techniques. NDT&E Int. 67, 10–16 (2014). https://doi.org/10.1016/j.ndteint.2014.06.005

    Article  Google Scholar 

  15. Haupert, S., Rivière, J., Anderson, B., Ohara, Y., Ulrich, T.J., Johnson, P.: Optimized dynamic acousto-elasticity applied to fatigue damage and stress corrosion cracking. J. Nondestruct. Eval. 33, 226–238 (2014). https://doi.org/10.1007/s10921-014-0231-2

    Article  Google Scholar 

  16. Riviere, J., Remillieux, M.C., Ohara, Y., Anderson, B.E., Haupert, S., Ulrich, T.J., Johnson, P.A.: Dynamic acousto-elasticity in a fatigue-cracked sample. J. Nondestruct. Eval. 33, 216–225 (2014). https://doi.org/10.1007/s10921-014-0225-0

    Article  Google Scholar 

  17. Reichel, W., Conrad, D.: Beton, B 1. Veb Varfag für Bauwesen, Berlin (1976)

    Google Scholar 

  18. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon, New York (1986)

    MATH  Google Scholar 

  19. Zarembo, L.K., Krasil’nikov, V.A.: Nonlinear phenomena in the propagation of elastic waves in solids. Sov. Phys. Uspekhi 13, 778–797 (1977). https://doi.org/10.1070/pu1971v013n06abeh004281

    Article  Google Scholar 

  20. Benson, R.W., Raelson, V.J.: Acoustoelasticity. Prod. Eng. 30, 56–59 (1959)

    Google Scholar 

  21. Toupin, R.A., Bernstein, B.: Sound waves in deformed perfectly elastic materials. Acoustoelastic effect. J. Acoust. Soc. Am. 33, 216–225 (1961). https://doi.org/10.1121/1.1908623

    Article  MathSciNet  Google Scholar 

  22. Pecorari, C., Mendelsohn, D.A.: Forced nonlinear vibrations of a one-dimensional bar with arbitrary distributions of hysteretic damage. J. Nondestruct. Eval. 33, 239–251 (2014). https://doi.org/10.1007/s10921-014-0228-x

    Article  Google Scholar 

  23. Rudenko, O.V., Sapozhnikov, O.A.: Self-action effects for wave beams containing shock fronts. Phys. Uspekhi 47(9), 907 (2004). https://doi.org/10.1070/pu2004v047n09abeh001865

    Article  Google Scholar 

  24. Nazarov, V.E., Kiyashko, S.B.: Acoustic waves in media with hysteretic nonlinearity and linear dispersion. Tech. Phys. 59, 311–317 (2014). https://doi.org/10.1134/s1063784214030207

    Article  Google Scholar 

  25. Nazarov, V.E., Kiyashko, S.B.: Modified Davidenkov hysteresis and the propagation of sawtooth waves in polycrystals with hysteretic loss saturation. Phys. Met. Metallogr. 117, 766–771 (2016). https://doi.org/10.1134/s0031918x1608010x

    Article  Google Scholar 

  26. Nazarov, V.E., Radostin, A.V., Ostrovsky, L.A., Soustova, I.A.: Wave processes in media with hysteretic nonlinearity. Pt. 1. Acoust. Phys. 49, 385–395 (2003). https://doi.org/10.1134/1.1574363

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Program No. 7 “Topical Issues of Photonics and Sounding of Inhomogeneous Media and Materials” of the Presidium of the Russian Academy of Sciences, within the framework of the state assignment in the field of scientific research (Project No. 2.1433.2017/4.6) and under financial support of the Council for the Grants of the President of the Russian Federation for the State Support of the Leading Scientific Schools of the Russian Federation (Project No. NSh-2685.2018.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veniamin Nazarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, V., Kolpakov, A. & Radostin, A. Effect of Water-to-Cement Ratio on Acoustic Nonlinearity of a Hardened Mortar. J Nondestruct Eval 38, 24 (2019). https://doi.org/10.1007/s10921-019-0560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0560-2

Keywords

Navigation