Skip to main content
Log in

Wall Thinning Characterization of Composite Reinforced Steel Tube Using Frequency-Domain PEC Technique and Neural Networks

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Resin fiber composites reinforcement is used to recover the original mechanical properties of steel tubes subjected to corrosion wall thinning. Pulsed Eddy Current (PEC) technique can perform nondestructive evaluation of this kind of component, due to its capability to penetrate nonmagnetic insulation. Despite the evaluation capability, distinguishing inner surface from outer surface defects is not an easy task for time-domain PEC technique. In this paper, Fast Fourier transform (FFT) in combination with multilayer perceptron (MLP) neural network classifiers are applied to PEC signals and used to detect defects (wall thinning) and also to indicate their position. The tested sample is a carbon steel tube, with 17 mm of composite reinforcement, where two defects were manufactured, one at the inner and another at the outer surface. An automated scanner system is used to obtain C-scan maps, showing the thinning areas. Two feature extraction methods are used to produce the input features for the neural network classifier: the coefficients of the FFT; and the parameters of an exponential curve fitted to the FFT coefficients. The results indicate that the MLP neural network correctly recognized the presence of wall thinning and its location with detection efficiencies of 97.4 and 97.0%, respectively. The PEC technique analysis in frequency-domain associated with a neural network classifier seems to be a promising alternative to identify the position of defects in composite reinforced steel tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rohem, N.R.F., Pacheco, L.J., Budhe, S., Banea, M.D., Sampaio, E.M., Barros, S.: Development and qualification of a new polymeric matrix laminated composite for pipe repair. Compos. Struct. 152, 737–745 (2016). https://doi.org/10.1016/j.compstruct.2016.05.091

    Article  Google Scholar 

  2. Duell, J.M., Wilson, J.M., Kessler, M.R.: Analysis of a carbon composite overwrap pipeline repair system. Int. J. Press. Vessel. Pip. 85, 782–788 (2008). https://doi.org/10.1016/j.ijpvp.2008.08.001

    Article  Google Scholar 

  3. Keller, M.W., Jellison, B.D., Ellison, T.: Moisture effects on the thermal and creep performance of carbon fiber/epoxy composites for structural pipeline repair. Composites 45, 1173–1180 (2013). https://doi.org/10.1016/j.compositesb.2012.07.046

    Article  Google Scholar 

  4. Winnik, S.: Corrosion Under Insulation (CUI) Guidelines, Revised edn. Woodhead Publishing Limited, Cambridge (2016)

    Google Scholar 

  5. Ahmed, W.H.: Evaluation of the proximity effect on flow-accelerated corrosion. Ann. Nucl. Energy 37, 598–605 (2010). https://doi.org/10.1016/j.anucene.2009.12.020

    Article  Google Scholar 

  6. He, Y., Tian, G., Zang, H., Alamin, M., Simm, A., Jackson, P.: Steel corrosion characterization using Pulsed Eddy Current systems. IEEE Sens. J. 12, 2113–2119 (2012). https://doi.org/10.1109/JSEN.2012.2184280

    Article  Google Scholar 

  7. Yu, Y., Yan, Y., Wang, F., Tian, G., Zhang, D.: An approach to reduce lift-off noise in Pulsed Eddy Current nondestructive technology. NDT E Int. 63, 1–6 (2014). https://doi.org/10.1016/j.ndteint.2013.12.012

    Article  Google Scholar 

  8. Rourke, M., Li, Y., Roberts, G.: Multi-Tubular Corrosion Inspection Using a Pulsed Eddy Current Logging Tool. In: IPTC 2013, International Petroleum Technology Conference. https://doi.org/10.2523/16645-MS

  9. Tian, G.Y., Sophian, A., Taylor, D., Rudlin, J.: Multiple sensors on Pulsed Eddy Current detection for 3d subsurface crack assessment. IEEE Sens. J. 5, 90–96 (2005). https://doi.org/10.1109/JSEN.2004.839129

    Article  Google Scholar 

  10. Huang, S., Wang, S.: New Technologies in Electromagnetic Non-destructive Testing, pp 41–79. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0578-7_2

    Chapter  Google Scholar 

  11. Park, D.J., Angani, C.S., Kishore, M.B., Vértesy, G., Lee, D.H.: Application of the Pulsed Eddy Current technique to inspect pipelines of nuclear plants. J. Magn. 18, 342–347 (2013). https://doi.org/10.4283/JMAG.2013.18.3.342

    Article  Google Scholar 

  12. Renken, C.J.: The use of personal computer to extract information from Pulsed Eddy Current. Mater. Eval. 59, 356–360 (2001)

    Google Scholar 

  13. Majidnia, S., Rudlin, J., Nilavalan, R.: Investigations on a Pulsed Eddy Current system for flaw detection using an encircling coil on a steel pipe. Insight—Non-Destr. Test. Cond. Monit. 56, 560–565 (2014)

    Article  Google Scholar 

  14. Zeng, Z., Li, Y., Huang, L., Luo, M.: Frequency-domain defect characterization in Pulsed Eddy Current testing. Int. J. Appl. Electromagn. Mech. 45, 621–625 (2014). https://doi.org/10.3233/JAE-141885

    Article  Google Scholar 

  15. Chen, X., Hou, D., Zhao, L., Huang, P., Zhang, G.: Study on defect classification in multi-layer structures based on fisher linear discriminate analysis by using Pulsed Eddy Current technique. NDT E Int. 67, 46–54 (2014). https://doi.org/10.1016/j.ndteint.2014.07.003

    Article  Google Scholar 

  16. He, Y., Luo, F., Pan, M., Hu, X., Gao, J., Liu, B.: Defect classification based on rectangular Pulsed Eddy Current sensor in different directions. Sens Actuators A 157, 26–31 (2010). https://doi.org/10.1016/j.sna.2009.11.012

    Article  Google Scholar 

  17. Tian, G.Y., Sophian, A.: Defect classification using a new feature for Pulsed Eddy Current sensors. NDT E Int. 38, 77–82 (2005). https://doi.org/10.1016/j.ndteint.2004.06.001

    Article  Google Scholar 

  18. Tian, G.Y., He, Y., Adewale, I., Simm, A.: Research on spectral response of Pulsed Eddy Current and NDE applications. Sens. Actuators A 189, 313–320 (2013). https://doi.org/10.1016/j.sna.2012.10.011

    Article  Google Scholar 

  19. Cheng, W.: Pulsed Eddy Current testing of carbon steel pipes, wall-thinning through insulation and cladding. J. Nondestruct. Eval. 31, 215–224 (2012). https://doi.org/10.1007/s10921-012-0137-9

    Article  Google Scholar 

  20. Qiu, X., Zhang, P., Wei, J., Cui, X., Wei, C., Liu, L.: Defect classification by Pulsed Eddy Current technique in con-casting slabs based on spectrum analysis and wavelet decomposition. Sens. Actuators A 203, 272–81 (2013). https://doi.org/10.1016/j.sna.2013.09.004

    Article  Google Scholar 

  21. Pan, M., He, Y., Tian, G., Chen, D., Luo, F.: PEC frequency band selection for locating defects in two-layer aircraft structures with air gap variations. IEEE Trans. Instrum. Meas. 62, 2849–2856 (2013). https://doi.org/10.1109/TIM.2013.2239892

    Article  Google Scholar 

  22. Peng, Y., Qiu, X., Wei, J., Li, C., Cui, X.: Defect classification using PEC responses based on power spectral density analysis combined with EMD and EEMD. NDT E Int. 78, 37–5 (2016). https://doi.org/10.1016/j.ndt&eint.2015.11.003

  23. Kiwa, T., Kawata, T., Yamada, H., Tsukada, K.: Fourier-transformed eddy current technique to visualize cross-sections of conductive materials. NDT E Int. 40, 363–367 (2007). https://doi.org/10.1016/j.ndteint.2007.01.006

    Article  Google Scholar 

  24. Buck, J., Underhill, P.R., Morelli, J.E., Krause, T.W.: Simultaneous multiparameter measurement in Pulsed Eddy Current steam generator data using artificial neural networks. IEEE Trans. Instrum. Meas. 65, 672–679 (2016). https://doi.org/10.1109/TIM.2016.2514778

    Article  Google Scholar 

  25. Dolapchiev, I., Brandisky, K.: Crack sizing by using Pulsed Eddy Current technique and neural network. Facta Univ. 19, 371–377 (2006). https://doi.org/10.2298/FUEE0603371D

    Article  Google Scholar 

  26. Xie, S., Chen, Z., Chen, H., Wang, X., Takagi, T., Uchimoto, T.: Sizing of wall thinning defects using Pulsed Eddy Current testing signals based on a hybrid inverse analysis method. IEEE Trans. Instrum. Meas. 49, 1653–1656 (2013). https://doi.org/10.1109/TMAG.2012.2236827

    Article  Google Scholar 

  27. Liu, Z., Forsyth, D.S., Lepine, B.A., Hammad, I., Farahbakhsh, B.: Investigation into classifying 3D Pulsed Eddy Current signals with neural network. Insight—Non-Destruct. Test. Cond. Monit. 45, 608–614 (2003). https://doi.org/10.1784/insi.45.9.608.52940

    Article  Google Scholar 

  28. Arjun, V., Sasi, B., Rao, B.C.P., Mukhopadhyay, C.K., Jayakumar, T.: Optimisation of Pulsed Eddy Current probe for detection of sub-surface defects in stainless steel plates. Sens. Actuators A 226, 69–75 (2015). https://doi.org/10.1016/j.sna.2015.02.018

    Article  Google Scholar 

  29. Sophian, A., Tian, G.Y., Taylor D Rudlin, J.: A feature extraction technique based on principal component analysis for Pulsed Eddy Current NDT. NDT E Int. 36, 37–41 (2003). https://doi.org/10.1016/S0963-8695(02)00069-5

    Article  Google Scholar 

  30. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, New Jersey (2009)

    Google Scholar 

  31. Diniz, P.S.R., Silva, E.A.B., Netto, S,L.: Digital Signal Processing: System Analysis and Design, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  32. Tian, L., Yin, C., Cheng, Y., Bai, L.: Successive approximation method for the measurement of thickness using Pulsed Eddy Current. IEEE Int. Instrum. Meas. Technol. Conf. 2015, 848–852 (2015). https://doi.org/10.1109/I2MTC.2015.7151379

    Article  Google Scholar 

  33. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964). https://doi.org/10.1093/comjnl/7.2.149

    Article  MathSciNet  MATH  Google Scholar 

  34. Simas Filho, E.F., Silva Junior, M.M., Farias, P.C.M.A., Albuquerque, M.C.S., Silva, I.C., Farias, C.T.T.: Flexible decision support system for ultrasound evaluation of fiber-metal laminates implemented in a DSP. NDT E Int. 79, 38–45 (2016). https://doi.org/10.1016/j.ndteint.2015.12.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESB for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla B. Larocca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larocca, C.B., Farias, C.T.T., Simas Filho, E.F. et al. Wall Thinning Characterization of Composite Reinforced Steel Tube Using Frequency-Domain PEC Technique and Neural Networks. J Nondestruct Eval 37, 44 (2018). https://doi.org/10.1007/s10921-018-0477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0477-1

Keywords

Navigation