Skip to main content
Log in

Structural Health Monitoring Procedure for Composite Structures through the use of Artificial Neural Networks

  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

In this paper different architectures of Artificial Neural Networks (ANNs) for structural damage detection are studied. The main objective is to investigate an ANN able to detect and localize damage without any prior knowledge on its characteristics so as to serve as a real-time data processor for Structural Health Monitoring (SHM) systems. Two different architectures are studied: the standard feed-forward Multi Layer Perceptron (MLP) and the Radial Basis Function (RBF) ANNs. The training data are given, in terms of a Damage Index ℑD, properly defined using a piezoelectric sensor signal output to obtain suitable information on the damage position and dimensions. The electromechanical response of the assembled structure has been computed by means of a Multidomain Boundary Element code developed in the framework of piezoelectricity. On this basis, the neural networks are then used to recognize the location of the damage and its characteristics and the numerical results highlight the main differences on the performances of the two different ANNs analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Balageas, C. Fritzen, A. Guemes, “Structural Health Monitoring”, ISTE, London, UK, 2006.

    Google Scholar 

  2. W. J. Staszewski, C. Boller, G. Tomlison, “Health Mon-itoring of Aerospace Structures Smart sensor technologies and signal processing”, John Wiley and Sons Ltd, 2004.

    Google Scholar 

  3. S. Grondel, J. Assaad, C. Delebarre, E. Moulin, “Health monitoring of composite wingbox structure”, Ultrasonics, 42, pp. 819–824, 2004.

    Article  Google Scholar 

  4. I. Chopra, “Review of State of Art of Smart Structures and Integrated Systems”, AIAA Journal, 40(10), pp. 2145–2187, 2002.

    Article  Google Scholar 

  5. D. M. Pearis, G. Park, D. J. Inman, “Improving accessibility of the impedance-based Structural Health Monitoring”, Journal of Intelligent Material Systems and Structures, 15, pp. 129–139, 2004.

    Article  Google Scholar 

  6. T. Liu, V. Martin, K. Sritawat, “Modelling the input-output behaviour of piezoelectric structural heath monitoring systems for composite plates”, Smart Materials and Structures, 12(5), pp. 836–844, 2003.

    Article  Google Scholar 

  7. J. Beuth, “Separation of crack extension modes in or-thotropic delamination models”, International Journal of Fracture, 77, pp. 305–321, 1996.

    Article  Google Scholar 

  8. S. Narayan, J. Beuth, “Designation of mode mix in or-thotropic composite delamination problems”, International Journal of Fracture, 90, pp. 383–400, 1998.

    Article  Google Scholar 

  9. W. J. Staszewski, “Intelling signal processing for damage detection in composite materials”, Composite Science and Technology, 62, pp. 941–950, 2002.

    Article  Google Scholar 

  10. S. Yuan, L. Wang, G. Peng, “Neural network method based on a new damage signature for structural health monitoring”, Thin-Walled Structures, 43, pp. 553–563, 2005.

    Article  Google Scholar 

  11. G. R. Kirikera, J. W. Lee, M. J. Schulz, A. Ghoshal, M. J. Sundaresan, R. J. Allemang, V. N. Shanov, H. Westheider, “Initial evaluation of an active/passive structural neural system for health monitoring of composite materials”, Smart Materials and Structures, 15, pp. 1275–1286, 2006.

    Article  Google Scholar 

  12. Z. Chaudhry, A. J. Ganino, “Damage detection using neural networks: an initial experimental study on debonded beams”, Journal of Intellingent Material Systems and Structures, 5, pp. 585–958, 1994.

    Article  Google Scholar 

  13. A. C. Okafor, K. Chandrashekhara, Y. P. Jiang, “Delamination prediction in composite beams with built-in piezoelectric devices using modal analysis and neural network”, Smart Materials and Structures, 5, pp. 338–347, 1996.

    Article  Google Scholar 

  14. V. Jr. Lopes, G. Park, H. H. Cudney, D. J. Inman, “Impedance-based structural health monitoring with artificial neural networks”, J. Intell. Mater. Syst. Struct., 11, pp. 206–214, 2000.

    Article  Google Scholar 

  15. S. W. Shin, C. B. Yun, H. Furuta, J. S. Popovics, “Nondestructive evaluation of crack depth in concrete using PCA-compressed wave transmission function and neural networks”, Experimental Mechanics, 48, pp. 225–231, 2008.

    Article  Google Scholar 

  16. V. Giurgiutiu, “Comparative study of neural-network damage detection from a statistical set of electro-mechanical impedance spectra”, in ”Procedings of SPIE”, Smart Structures and Materials, 108, pp. 5047–5015, 2002.

    Google Scholar 

  17. C. M. Bishop, “Neural Networks for Pattern Recognition”, Clarendon Press, ISBN 0-19-853849-9, 1995.

    Google Scholar 

  18. R. G. Cowell, A. P. Dawid, S. L. Lauritzen, D. J. Spiegelhalter, ”Probabilistic Networks and Expert Systems“, Springer-Verlag, 1999.

    MATH  Google Scholar 

  19. H. Demuth, M. Beale, “MATLAB Neural Network Tool Box”, The Math Works, Inc., Natick, MA, 2000.

    Google Scholar 

  20. M. T. Hagan, H. B. Demuth, M. Beale, “Neural Network Design”, PWS Publishing Co.; Int. Thompson Publishing, 2002.

    Google Scholar 

  21. A. Alaimo, A. Milazzo, C. Orlando, “Numerical analysis of a piezoelectric structural health monitoring system for composite flange-skin delamination detection”, Composite Structures, 100, pp. 343–355, 2013.

    Article  Google Scholar 

  22. B. Lin, V. Giurgitiu, “Modeling and testing of PZT and PVDF piezoelectric wafer active sensors”, Smart Materials and Structures, 15, pp. 1085–1093, 2006.

    Article  Google Scholar 

  23. K. Kuang, S. Quek, W. Cantwell, “Use of polymer sensors for monitoring the static and dynamic response of a cantilever composite beam”, Journal of Material Science, 39, pp. 3839–3843, 2004.

    Article  Google Scholar 

  24. J. Sirohi, I. Chopra, “Fundamental understanding of piezoelectric strain sensors”, Journal of Intelligent Material Systems and Structures, 11, pp. 246–257, 2000.

    Article  Google Scholar 

  25. A. Alaimo, A. Milazzo, C. Orlando, “A boundary element model for piezoelectric dynamic strain sensing of cracked structures”, Advances in Boundary Element Technique, XII BETEQ 13–15 July, Brasilia, Brazil, 2011.

    Google Scholar 

  26. A. Alaimo, A. Milazzo, C. Orlando, “Boundary elemets analysis of adhesively bonded piezoelectric active repair”, Engineering Fracture Mechanics, 76, pp. 500–511, 2009.

    Article  Google Scholar 

  27. T. P. Vogl, J. K. Mangis, A. K. Zigler, W. T. Zink, D. L. Alkon, “Accelerating the convergence of the backpropagation method”, Biological Cybernetics, vol. 59, pp. 256–264, 1988.

    Article  Google Scholar 

  28. E. Barnard, “Optimization for training neural nets”, IEEE Trans. on Neural Networks, vol. 3, no. 2, pp. 232–240, 1992.

    Article  Google Scholar 

  29. S. Chen, C. F. N. Cowan, P. M. Grant, “Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks”, IEEE Transactions on Neural Networks, 2, pp. 302–9, 1991.

    Article  Google Scholar 

  30. J. T. Wang, I. S. Raju, D. W. Sleight, “Composite skin-stiffner debond analyses using fracture mechanics approach with shell elements”, Composite Engineering, 5, pp. 277–296, 1995.

    Article  Google Scholar 

  31. A. Alaimo, A. Milazzo, C. Orlando, “BEM analy of a Piezo-electric Structural Health Monitoring system for Delamination Detection”, Key Engineering Materials, 577–578, pp. 401–404, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaimo, A., Barracco, A., Milazzo, A. et al. Structural Health Monitoring Procedure for Composite Structures through the use of Artificial Neural Networks. Aerotec. Missili Spaz. 94, 14–22 (2015). https://doi.org/10.1007/BF03404684

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03404684

Navigation