Skip to main content
Log in

Impact Modelling and A Posteriori Non-destructive Evaluation of Homogeneous Particleboards of Sugarcane Bagasse

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

With a view to gaining an in-depth assessment of the response of particleboards (PBs) to different in-service loading conditions, samples of high-density homogeneous PBs of sugarcane bagasse and castor oil polyurethane resin were manufactured and subjected to low velocity impacts using an instrumented drop weight impact tower and four different energy levels, namely 5, 10, 20 and 30 J. The prediction of the damage modes was assessed using Comsol Multiphysics\(^\circledR .\) In particular, the random distribution of the fibres and their lengths were reproduced through a robust model. The experimentally obtained dent depths due to the impactor were compared with the ones numerically simulated showing good agreement. The post-impact damage was evaluated by a simultaneous system of image acquisitions coming from two different sensors. In particular, thermograms were recorded during the heating up and cooling down phases, while the specklegrams were gathered one at room temperature (as reference) and the remaining during the cooling down phase. On one hand, the specklegrams were processed via a new software package named Ncorr v.1.2, which is an open-source subset-based 2D digital image correlation (DIC) package that combines modern DIC algorithms proposed in the literature with additional enhancements. On the other hand, the thermographic results linked to a square pulse were compared with those coming from the laser line thermography technique that heats a line-region on the surface of the sample instead of a spot. Surprisingly, both the vibrothermography and the line scanning thermography methods coupled with a robotized system show substantial advantages in the defect detection around the impacted zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

ABNT:

Associacao Brasileira de Normas Tecnicas

ANSI:

American National Standards Institute

BD:

Bulk density

CIS:

Cold image subtraction

CMOS:

Complementary metal-oxide-semiconductor

CV:

Coefficient of variation

DIC:

Digital image correlation

EOF:

Empirical orthogonal function

FEM:

Finite element method

FOV:

Field of view

FPAs:

Focal plane arrays

FT:

Flash thermography

GUI:

Graphical user interface

HD:

Hardness

IRT:

Infrared thermography

LLT:

Laser line thermography

LSgT:

Line scanning thermography

LStT:

Laser spot thermography

MDFs:

Medium-density fiberboards

MDI:

Methylenediphenyl isocyanate

MOE:

Modulus of elasticity

MOR:

Modulus of rupture

Nd:YAG:

Neodymium-doped yttrium–aluminium–garnet

NDT:

Non-destructive testing

NETD:

Noise equivalent temperature difference

PBs:

Particleboards

PCT:

Principal component thermography

PDE:

Partial differential equation

PT:

Pulsed thermography

ROI:

Region of interest

SCB:

Sugarcane bagasse

SH:

Screw-holding

SPT:

Square pulse thermography

\(\mathrm{t}_\mathrm{obs}\) :

Time of observation

THz:

Terahertz

TS:

Thickness swelling

VT:

Vibrothermography

WA:

Water absorption

References

  1. Tabarsi, E., Kozak, R., Cohen, D., Gaston, C.: A market assessment of the potential for OSB products in the North American office furniture and door manufacturing industries. For. Prod. J. 53(7–8), 19–27 (2003)

    Google Scholar 

  2. Madurwar, M., Ralegaonkar, R.V., Mandavgane, S.A.: Application of agro-waste for sustainable construction materials: a review. Constr. Build. Mater. 38, 872–878 (2013)

    Article  Google Scholar 

  3. Buyuksari, U., Ayrilmis, N., Avci, E., Koc, E.: Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones. Bioresour. Technol. 101, 255–259 (2009)

    Article  Google Scholar 

  4. Çöpür, Y., Güler, C., Taşçıoğlu, C., Tozluoğlu, A.: Incorporation of hazelnut shell and husk in MDF production. Bioresour. Technol. 99, 7402–7406 (2008)

    Article  Google Scholar 

  5. Pirayesh, H., Khazaeian, A.: Using almond (Prunus amygdalus L.) shell as a biowaste resource in wood based composite. Composites B 43, 1475–1479 (2012)

    Article  Google Scholar 

  6. Batalla, L., Nuñez, A.J., Marcovich, N.E.: Particleboards from peanut shell flour. J. Appl. Polym. Sci. 97, 916–923 (2005)

    Article  Google Scholar 

  7. Guler, C., Copur, Y., Tascioglu, C.: The manufacture of particleboards using mixture of peanut hull (Arachis hypogaea L.) and European black pine (Pinus nigra Arnold) wood chips. Bioresour. Technol. 99, 2893–2897 (2008)

    Article  Google Scholar 

  8. Wechsler, A., Zaharia, M., Crosky, A., Jones, H., Ramírez, M., Ballerini, A., Nuñez, V., Sahajwalla, M.: Macadamia (Macadamia integrifolia) shell and castor (Rícinos communis) oil based sustainable particleboard: a comparison of its properties with conventional wood based particleboard. Mater. Des. 50, 117–123 (2013)

    Article  Google Scholar 

  9. Bektas, I., Guler, C., Kalaycioğlu, H., Mengeloglu, F., Nacar, M.: The manufacture of particleboards using sunflower stalks (Helianthus annuus L.) and poplar wood (Populus alba L.). J. Compos. Mater. 39, 467–473 (2005)

    Article  Google Scholar 

  10. Guntekin, E., Karakus, B.: Feasibility of using eggplant (Solanum melongena) stalks in the production of experimental particleboard. Ind. Crops Prod. 27, 354–358 (2008)

    Article  Google Scholar 

  11. Quintana, G.C., Velásquez Jiménez, J.A., Betancourt, S., Gañán, P.F.: Binderless fiberboard from steam exploded banana bunch. Ind. Crops Prod. 29(1), 60–66 (2009)

    Article  Google Scholar 

  12. Sampathrajan, A., Vijayaraghavan, N.C., Swaminathan, K.R.: Mechanical and thermal properties of particle boards made from farm residues. Bioresour. Technol. 40, 249–251 (1992)

    Article  Google Scholar 

  13. Kadam, V., Chattopadhyay, K., Bharimalla, A., Venugopal, B.: Mechanical characterization of brown and green coconut husk. J. Nat. Fibers 11(4), 322–332 (2014)

    Article  Google Scholar 

  14. Xu, R., Sugawara, Y., Widyorini, R., Han, G.P., Kawai, S.: Manufacture and properties of low-density binderless particleboard from kenaf core. Wood Sci. 50, 62–67 (2004)

    Article  Google Scholar 

  15. Machado Cravo, J.C., de Lucca Sartori, D., Màrmol, G., de Carvalho Balieiro, J.C., de Oliveira Machado, G., Fiorelli, J.: Manufacture of particleboard based on cement bag and castor oil polyurethane resin. Constr. Build. Mater. 87, 8–15 (2015)

    Article  Google Scholar 

  16. Hernández-Salas, J.M., Villa-Ramírez, M.S., Veloz-Rendó, N.J.S., Rivera-Hernández, K.N., González-César, R.A., Plascencia-Espinosa, M.A., et al.: Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour. Technol. 100, 1238–1245 (2009)

    Article  Google Scholar 

  17. Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T.: Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol. 74, 69–80 (2000)

    Article  Google Scholar 

  18. Loh, Y.R., Debnath, S., Ekhlasur Rahman, M., Das, C.A.: Sugarcane bagasse–the future composite material: a literature review. Resour. Conserv. Recycl. 75, 14–22 (2013)

    Article  Google Scholar 

  19. Vilay, V., Jaafar, M., Mat Taib, R., Todo, M.: Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos. Sci. Technol. 68, 631–638 (2008)

    Article  Google Scholar 

  20. de Sousa, M.V., Monteiro, S., d’Almeida, J.R.M.: Evaluation of pre-treatment, size and molding pressure on flexural mechanical behavior of chopped bagasse-polyester composites. Polym. Test. 23, 253–258 (2004)

    Article  Google Scholar 

  21. Carvajal, O., Valdés, J.L., Puig, J.: Bagasse particleboards for building purpose. Holz als Roh- und Werkstoff 54(1), 61–63 (1996)

    Article  Google Scholar 

  22. Nonaka, S., Umemura, K., Kawai, S.: Characterization of bagasse binderless particleboard manufactured in high-temperature range. J. Wood Sci. 59, 50–56 (2013)

    Article  Google Scholar 

  23. Fiorelli, J., de Lucca Sartori, D., Machado Cravo, J.C.: Savastano Jr., H., Rossignolo, J.A., do Nascimento, M.F., Rocco Lahr, F.A.: Sugarcane bagasse and castor oil polyurethane adhesive-based particulate composite. Mater. Res. 16(2), 439–446 (2013)

    Article  Google Scholar 

  24. Zike, S., Kalnins, K.: Enhanced impact absorption properties of plywood. In: Civil Engineering’11, 3rd International Scientific Conference Proceedings, Jelgava, Latvia, 2011, pp. 125–130

  25. Sfarra, S., López, F., Sarasini, F., Tirillò, J., Ferrante, L., Perilli, S., Ibarra-Castanedo, C., Paoletti, D., Lampani, L., Barbero, E., Sánchez-Sáez, S., Maldague, X.: Analysis of damage in hybrid composites subjected to ballistic impacts: an integrated non-destructive approach. In: Thakur, V.K., Thakur, M.K., Kessler, M.R. (eds) Handbook of Composites from Renewable Materials. Physico-chemical and Mechanical Characterization, vol. 3, pp. 175–210. Wiley-Scrivener (2017). ISBN 978-1-119-22366-5

  26. Tang, Z., Hang, C., Suo, T., Wang, Y., Dai, L., Zhang, Y.: Numerical and experimental investigation on hail impact on composite panels. Int. J. Impact Eng. (2016). https://doi.org/10.1016/j.ijimpeng.2016.05.016

  27. Bendada, A., Sfarra, S., Genest, M., Paoletti, D., Rott, S., Talmy, E., Ibarra-Castanedo, C., Maldague, X.: How to reveal subsurface defects in Kevlar\(\textregistered \) composite materials after an impact loading using infrared vision and optical NDT techniques? Eng. Fract. Mech. 108, 195–208 (2013)

    Article  Google Scholar 

  28. Meola, C., Carlomagno, G.M.: Infrared thermography to evaluate impact damage in glass/epoxy with manufacturing defects. Int. J. Impact Eng. 67, 1–11 (2014)

    Article  Google Scholar 

  29. Shi, W., Wu, Y., Wu, L.: Quantitative analysis of the projectile impact on rock using infrared thermography. Int. J. Impact Eng. 34, 990–1002 (2007)

    Article  Google Scholar 

  30. Prentice, H.J., Proud, W.G., Walley, S.M., Field, J.E.: Optical techniques for the investigation of the ballistic impact of thin plates. Int. J. Impact Eng. 38, 849–863 (2011)

    Article  Google Scholar 

  31. Sfarra, S., Ibarra-Castanedo, C., Santulli, C., Sarasini, F., Ambrosini, D., Paoletti, D., Maldague, X.: Eco-friendly laminates: from the indentation to non-destructive evaluation by optical and infrared monitoring techniques. Strain 49, 175–189 (2013)

    Article  Google Scholar 

  32. Sfarra, S., Ibarra-Castanedo, C., Santulli, C., Paoletti, A., Paoletti, D., Sarasini, F., Bendada, A., Maldague, X.: Falling weight impacted glass and basalt fibre woven composites inspected using non-destructive techniques. Composites B 45, 601–608 (2013)

    Article  Google Scholar 

  33. Sfarra, S., Ibarra-Castanedo, C., Santulli, C., Paoletti, D., Maldague, X.: Monitoring of jute/hemp fiber hybrid laminates by nondestructive testing techniques. Sci. Eng. Compos. Mater. 23(3), 283–300 (2016)

    Google Scholar 

  34. Sfarra, S., Theodorakeas, P., Černecky, J., Pivarčiová, E., Perilli, S., Koui, M.: Inspecting marquetries at different wavelengths: the preliminary numerical approach as aid for a wide-range of non-destructive tests. J. Nondestruct. Eval. 36(6), 1–20 (2017)

    Google Scholar 

  35. Blaber, J., Adair, B., Antoniou, A.: Ncorr: open-source digital image correlation Matlab software. Exp. Mech. 55(6), 1105–1122 (2015a)

    Article  Google Scholar 

  36. Blaber, J., Adair, B.S., Antoniou, A.: A methodology for high resolution digital image correlation in high temperature experiments. Rev. Sci. Instrum. 86, 035111-1–035111-6 (2015b)

  37. Zhang, H., Hassler, U., Genest, M., Fernandes, H., Robitaille, F., Ibarra-Castanedo, C., Joncas, S., Maldague, X.: Comparative study on submillimeter flaws in stitched T-joint carbon fiber reinforced polymer by infrared thermography, microcomputed tomography, ultrasonic c-scan and microscopic inspection. Opt. Eng. 54(10), 104109 (2015)

    Article  Google Scholar 

  38. Fernandes, H., Zhang, H., Ibarra-Castanedo, C., Maldague, X.: Fiber orientation assessment on randomly-oriented strand composites by means of infrared thermography. Compos. Sci. Technol. 121, 25–33 (2015)

    Article  Google Scholar 

  39. Sham, F.C., Xu, W.T., Lo, T.: Application of flash thermography for crack identification in concrete materials. Insight 52(9), 494–497 (2010)

    Article  Google Scholar 

  40. Arndt, R.W.: Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering. Infrared Phys. Technol. 53(4), 246–253 (2010)

    Article  Google Scholar 

  41. Renshaw, J., Chen, J.C., Holland, S.D., Thompson, R.B.: The sources of heat generation in vibrothermography. NDT&E Int. 44(8), 736–739 (2011)

    Article  Google Scholar 

  42. Oswald-Tranta, B., Sorger, S.: Scanning pulse phase thermography with line heating. QIRT J. 9(2), 103–122 (2012)

    Article  Google Scholar 

  43. Ibarra-Castanedo, C., Tarpani, J.R., Maldague, X.P.V.: Nondestructive testing with thermography. Eur. J. Phys. 34, S91–S109 (2013)

    Article  Google Scholar 

  44. Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures. Compos. Struct. 58(4), 521–528 (2002)

    Article  Google Scholar 

  45. Zhang, H., Yu, L., Hassler, U., Fernandes, H., Genest, M., Robitaille, F., Joncas, S., Holub, W., Sheng, Y., Maldague, X.: An experimental and analytical study of micro-laser line thermography on micro-sized flaws in stitched carbon fiber reinforced polymer composites. Compos. Sci. Technol. 126, 17–26 (2016)

    Article  Google Scholar 

  46. Zhang, H., Fernandes, H., Dizeu, F., Hassler, U., Fleuret, J., Genest, M., Ibarra-Castanedo, C., Robitaille, F., Joncas, S., Maldague, X.: Pulsed micro-laser line thermography on submillimeter porosity in carbon fiber reinforced polymer composites: experimental and numerical analyses for the capability of detection. Appl. Opt. 55(34), D1–D10 (2016)

    Article  Google Scholar 

  47. Pawar, S.S., Vavilov, V.P.: Applying the heat conduction-based 3D normalization and thermal tomography to pulsed infrared thermography for defect characterization in composite materials. Int. J. Heat Mass Transf. 94, 56–65 (2016)

    Article  Google Scholar 

  48. American Society for Testing and Materials (ASTM): D 1037: Standard Test Method for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. ASTM, Philadelphia (1996)

  49. Fiorelli, J., Curtolo, D.D., Barrero, N.G., Savastano Jr., H., Pallone, E.M.J.A., Johnson, R.: Particulate composite based on coconut fiber and castor oil polyurethane adhesive: an ecoefficient product. Ind. Crops Prod. 40, 69–75 (2012)

    Article  Google Scholar 

  50. Associação Brasileira de Normas Técnicas (ABNT): NBR 14810: Chip Panel Sheets—Part 3: Testing Methods, Terminology. ABNT, Rio de Janeiro (2006)

  51. Lopresto, V., Caprino, G., Leone, C., Langella, A.: A damage index of indentation sensitivity in low velocity impact conditions. Polym. Compos. 36, 987–991 (2015)

    Article  Google Scholar 

  52. Caprino, G., Lopresto, V.: The significance of indentation in the inspection of carbon fibre-reinforced plastic panels damaged by low-velocity impact. Compos. Sci. Technol. 60(7), 1003–1012 (2000)

    Article  Google Scholar 

  53. Belingardi, G., Vadori, R.: Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates. Int. J. Impact Eng. 27(2), 213–229 (2002)

    Article  Google Scholar 

  54. Wos, P., Michalcki, J.: Effect of initial cylinder liner honing surface roughness on aircraft piston engine performances. Tribol. Lett. 41, 555–567 (2011)

    Article  Google Scholar 

  55. Schönauer, W., Adolph, T.: How we solve PDEs. J. Comput. Appl. Math. 131(1–2), 473–492 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Introduction to Comsol Multiphysics\(\textregistered .\) http://cdn.comsol.com/documentation/5.0.1.276/IntroductionToCOMSOLMultiphysics.pdf. Accessed 1 May 2016

  57. Constitutive Equation. http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf. Accessed 26 May 2016

  58. Javier, J., Majano-Majano, A., Fernandez-Cabo, J.: On the identifiability of stiffness components of clear wood from a 3D off-axes prismatic specimen: angle orientation and friction effects. Eur. J. Wood Wood Prod. 74(3), 285–290 (2016)

    Article  Google Scholar 

  59. Rasul, M.G., Rudolph, V., Carsky, J.M.: Physical properties of bagasse. Fuel 78(8), 905–910 (1999)

    Article  Google Scholar 

  60. Han, Y.W., Catalano, E.A., Ciegler, A.: Chemical and physical properties of sugarcane bagasse irradiated with gamma rays. J. Agric. Food Chem. 31(1), 34–38 (1983)

    Article  Google Scholar 

  61. Fiorelli, J., Gomide, C.A.: Lahr, F.A.R., do Nascimento, M.F., de Lucca Sartori, D., Mejia Ballesteros, J.E., Bonila Bueno, S., Belini, U.L.: Physico-chemical and anatomical characterization of residual lignocellulosic fibers. Cellulose 21(5), 3269–3277 (2014)

    Article  Google Scholar 

  62. Öchsner, A.: Elasto-plasticity of Frame Structure Elements Modeling and Simulation of Rods and Beams. Springer, Berlin (2014). ISBN 978-3-662-44224-1

    Book  MATH  Google Scholar 

  63. Maldague, X.P.: Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley Interscience, New York (2001)

    Google Scholar 

  64. Zhang, H., Fernandes, H., Hassler, U., Ibarra-Castanedo, C., Genest, M., Robitaille, F., Joncas, S., Maldague, X.: Comparative study of microlaser excitation thermography and microultrasonic excitation thermography on submillimeter porosity in carbon fiber reinforced polymer composites. Opt. Eng. 56(4), 041304 (2016)

    Article  Google Scholar 

  65. Ibarra-Castanedo, C., Genest, M., Guibert, S., Piau, J.-M., Maldague, X.P.V., Bendada, A.: Inspection of aerospace materials by pulsed thermography, lock-in thermography, and vibrothermography: a comparative study. In: Knettel, K.M., Vavilov, V.P., Miles, J.J. (eds) Proceedings of SPIE, Thermosense XXIX, vol. 6541, 2007

  66. Zhang, H., Sfarra, S., Saluja, K., Peeters, J., Fleuret, J., Duan, Y., Fernandes, H., Avdelidis, N., Ibarra-Castanedo, C., Maldague, X.: Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography. J. Nondestruct. Eval. 36(2), 1–12 (2017)

    Article  Google Scholar 

  67. Gruss, C., Balageas, D.: Theoretical and experimental applications of the flying spot camera. In: EETI (ed) Proceedings of QIRT 1992—The International Conference on Quantitative Infrared Thermography—Eurotherm Series 27, 1992

  68. Deonna Woolard, F., Elliott Cramer, K.: Line scan versus flash thermography: comparative study on reinforced carbon–carbon. In: Raymond Peacock, G., Burleigh, D.D., Miles, J.J. (eds) Proceedings of SPIE, Thermosense XXVII, vol. 5782, pp. 315–323, 2005

  69. Ibarra-Castanedo, C., Servais, P., Ziadi, A., Klein, M., Maldague, X.: RITA—robotized inspection by thermography and advanced processing for the inspection of aeronautical components. In: Batsale, J.-C., Balageas, D., Battaglia, J.-L., et al. (eds) Proceedings of QIRT 2014—The 12th International Conference on Quantitative Infrared Thermography, vol. XXII (2014). http://www.ndt.net/article/qirt2014/papers/QIRT-2014-164.pdf

  70. Aindow, J., Markham, M., Puttick, K., Rider, J., Rudman, M.: Fibre orientation detection in injection-moulded carbon fibre reinforced components by thermography and ultrasonics. NDT&E Int. 19(1), 24–29 (1986)

    Article  Google Scholar 

  71. Ball, R.J., Almond, D.P.: Detection and measurements of impact damage in thick carbon fibre reinforced laminates by transient thermography. NDT&E Int. 31, 165–173 (1998)

    Article  Google Scholar 

  72. Avdelidis, N.P., Almond, D.P., Dobbinson, A., Hawtin, B.C.: Pulsed thermography: philosophy, qualitative and quantitative analysis on certain aircraft applications. Insight 48(5), 286–289 (2006)

  73. Zhang, H., Sfarra, S., Sarasini, F., Ibarra-Castanedo, C., Perilli, S., Fernandes, H., Duan, Y., Peeters, J., Avdelidis, N.P., Maldague, M.: Optical and mechanical excitation thermography for impact response in basalt-carbon hybrid fiber-reinforced composite laminates. IEEE Trans. Ind. Inform. (2017). https://doi.org/10.1109/TIII.2017.2744179

  74. Balageas, D., Maldague, X., Burleigh, D., Vavilov, V.P., Oswald-Tranta, B., Roche, J.-M., Pradere, C., Carlomagno, G.M.: Thermal (IR) and other NDT techniques for improved material inspection. J. Nondestruct. Eval. 35, 1–17 (2016)

  75. Fernandes, H., Ibarra-Castanedo, C., Zhang, H., Maldague, X.P.V.: Thermographic non-destructive evaluation of carbon fiber-reinforced polymer plates after tensile testing. J. Nondestruct. Eval. 34, 35–45 (2015)

    Article  Google Scholar 

  76. Vavilov, V.P.: Modeling and characterizing impact damage in carbon fiber composites by thermal/infrared non-destructive testing. Composites B 61, 1–10 (2014)

    Article  Google Scholar 

  77. Ahi, K.: Mathematical modeling of THz point spread function and simulation of THz imaging systems. IEEE Trans. Terahertz Sci. Technol. 7(6), 747–754 (2017). https://doi.org/10.1109/TTHZ.2017.2750690

Download references

Acknowledgements

The research leading to these results has received funding from The Research Fund: Flanders FWO Travel Grant V4.010.16N and the University of Antwerp (Belgium). In addition, this study was supported by Russian Foundation Grant #17-19-01047 and in part by Tomsk Polytechnic University Competitiveness Enhancement Program Grant. Finally, the authors want to thank both the Canada Research Chair in Multipolar Infrared Vision (MIVIM) and the FAPESP-Brazil (Proc. 2012/13881-2 and 2013/1985-8) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Sfarra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Sfarra, S., Sarasini, F. et al. Impact Modelling and A Posteriori Non-destructive Evaluation of Homogeneous Particleboards of Sugarcane Bagasse. J Nondestruct Eval 37, 6 (2018). https://doi.org/10.1007/s10921-018-0461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0461-9

Keywords

Navigation