Skip to main content
Log in

A Framework of Data-Enabled Science for Evaluation of Material Damage Based on Acoustic Emission

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Analytics of ‘Big Data’ has been so promising that it is thought to be a new frontier for innovation, competition, and productivity in science and business. Vast amounts of material damage data constitute a unique set of “Big Data” which are generated from damage events when materials are under applied stress, and their occurrence is strongly related to the source physics. Such data forms fundamental “information infrastructure” such that the ensemble of these events can be used as the basis for evaluating the state of material damage, thereby making data-enabled material damage evaluation a new frontier for innovation. Presently, data-enabled digital analytics of material damage is in its infancy and is much needed to advance our understanding of damage physics, which has, for the most part, been overlooked by the classical deterministic approaches. In this article, we propose a framework of data-enabled science for evaluating material damage that includes the introduction of a 3S principle to guide the efforts, and a global damage variate D, which is a multivariate data matrix of random damage with its rows and columns being observations (spectrum) and scale (time series) vectors, respectively, of the real world damage. This multivariate damage data matrix facilitates the systematic employment of standard methods of multivariate statistics and data mining techniques. The proposed framework was implemented by examples taken from typical engineering materials using acoustic emission. The examples revealed that; (1) damage events are interactive and significantly correlated; (2) they form different ensembles in different loading stages implicating damage mechanisms, and (3) their phenomenological behavior can be modeled numerically. The information entropy of multiscale damage matrices revealed a trajectory of damage state that provides a new means to quantify real world material damage. We also highlight some promising research topics related to other digital analytics that can be used for the investigation of material damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. There are several different versions of these “V”s in “Big Data” related literature, but they are no more than a verbal description of the features of so called “Big Data”, and do not scientifically contribute to the problem solving.

  2. It is a luxury to have the knowledge of real stress and properties as they vary with the material microstructure which is not independent.

  3. For details, readers are suggested to our earlier work [63].

  4. It shall be discussed separately in a different work.

Abbreviations

\(D\) :

Multiscale and spectrum matrix of damage matrix

\(\bar{D}\) :

Probability space of random damage

\(L_{k}\) :

Summation of the \(k\)th row of \(D\) matrix

\(M\) :

Total number of observation intervals, or the number of row vectors of \(D\)

\(N\) :

Total number of divisions of magnitude scales of ERD, or the number of column vectors of \(D\)

\(X\) :

Column vector of \(D\). Each column vector is a time series of ERD of same scale, the elements in each of these columns are the independently observed quantity of ERD

\(Y\) :

Row vector of \(D\). Each row vector is an observation made in the same observation window. Because it covers ERD entire scale from the smallest to the largest, it is also the spectrum vector

\(Z\) :

Principal component, also as PC

\(\Omega \) :

Subset of damage variables, consisting of variables of timing, quantity, rate of occurrence, and the amplitude of the acquired ERD

\(a_{o}\), \(b_{o}\), and \(c_{o}\) :

Regression coefficients

\(f_k^D (t)\) :

Andrews function

\(g\) :

Unity condition

\(h\) :

Score function, \(h=\langle \varepsilon \rangle \)

\(\hbox {Index}\{\cdot \}\) :

Index function that counts for the number of the acquired events

\(n\) :

Sample size

\(p\) :

Gibbs probability of ERD occurrence

p-value:

Statistic significance of a hypothesis test

\(s\) :

Entropy, probabilistic entropy, information entropy, Shannon entropy

\(s^*\) :

Predicted entropy based principle of maximum entropy

\(x\) :

Acquired damage event, it is a function of all the measurable physical features of ERD

\(y\) :

The element of \(Y\) spectrum (observation) vector

\(z\) :

The scale of acquired ERD in unit of decibel (dB)

\(\bar{p}\) :

The mean of an observation vector of \(\bar{D}\)

\(\hat{p}\) :

Predicted value according to \(\bar{D}\)

\(\alpha \) :

\(D\) matrix element, number of acquired \(x\)

\(\rho _{_{JH}}\) :

Coefficients of autocorrelation

\(\rho _{_{XX}}\) :

Coefficients of autocorrelation

\(\upsigma \) :

Applied stress

\(\uptau \) :

Time of measurement

\(\upvarepsilon \) :

Score

\(\langle \varepsilon \rangle \) :

Observed average score

EDA:

Exploratory data analysis

ERD:

Events of random damage

KDD:

Knowledge discovery and data mining

NDE:

Nondestructive evaluation

PC:

Principal component

PCA:

Principal component analysis

TDS:

Trajectory of damage state

References

  1. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. AAAI Press, Palo Alto, CA (1996)

    Google Scholar 

  2. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17, 37–54 (1996)

    Google Scholar 

  3. Bell, B.: How soon will big data yield big profits? Forbes Mag. (2013)

  4. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute (2011)

  5. Loukides, M.: What is Data Science? http://radar.oreilly.com/2010/06/what-is-data-science.html (2010)

  6. Krajcinovic, D.: Selection of damage parameter: art or science? Mech. Mater. 28, 165–179 (1998)

    Article  Google Scholar 

  7. Besson, J.: Continuum models of ductile fracture: a review. Int. J. Damage Mech. 19, 3–52 (2009)

    Article  Google Scholar 

  8. Bazant, Z.P., Chen, E.P.: Scaling of structural failure. Appl. Mech. Rev. 50, 593–627 (1997)

    Article  Google Scholar 

  9. Bai, Y.L., Wang, H.Y., Xia, M.F., Ke, F.J.: Statistical mesomechanics of solid, linking coupled multiple space and time scales. Appl. Mech. Rev. 58, 372–388 (2005)

    Article  Google Scholar 

  10. Landau, L.D., Lifshitz, E.M.: Statistical Physics, 3rd edn. Translated by Peierls, E., Peierls, R.F. Pergamon Press, London (1980)

  11. Chadan, K., Sabatier, P.C.: Inverse Problems in Quantum Scattering Theory, 2nd edn. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  12. Aster, R.C., Thurber, C.H.: Parameter Estimation and Inverse Problems, vol. 2. Academic Press Inc, London (2012)

    Google Scholar 

  13. Kaipio, J.P., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2004)

    Google Scholar 

  14. Jardine, A.K.S., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 1483–1510 (2006)

    Article  Google Scholar 

  15. Jhang, F.K.Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10, 123–135 (2009)

    Article  Google Scholar 

  16. Hamstad, M.A.: A review: acoustic emission, a tool for composite-materials studies. Exp. Mech. 26, 7–13 (1986)

    Article  Google Scholar 

  17. Browne, M., Roques, A., Taylor, A.: The acoustic emission technique in orthopaedics: a review. J. Strain Anal. Eng. Des. 40, 59–79 (2005)

    Article  Google Scholar 

  18. Sposito, G., Ward, C., Cawley, P., Nagy, P.B., Scruby, C.: A review of non-destructive techniques for the detection of creep damage in power plant steels. NDT E Int. 43, 555–567 (2010)

    Article  Google Scholar 

  19. Carreon, H., Lakshminarayan, B., Faidi, W.I., Nayfeh, A.H., Nagy, P.B.: On the role of material property gradients in noncontacting thermoelectric NDE. NDT E Int. 36, 339–348 (2003)

    Article  Google Scholar 

  20. Grosse, C.U., Ohtsu, M.: Acoustic Emission Testing. Springer, Berlin (2008)

    Book  Google Scholar 

  21. Qi, G., Fan, M., Wayne, S.F.: Measurements of a multi-component variate in assessing evolving damage states using a polymeric material. IEEE Trans. Instrum. Meas. 60, 206–213 (2011)

    Article  Google Scholar 

  22. Shiotani, T., Fujii, K., Aoki, T., Amou, K.: Evaluation of progressive failure using AE sources and improved b-value on slope model tests. In: Progress in Acoustic Emission VII, pp. 529–534. Sapporo, Japan (1994)

  23. Ohtsu, M.: Acoustic emission theory for moment tensor analysis. Res. Nondestruct. Eval. 6, 169–184 (1995)

    Article  Google Scholar 

  24. Ohtsu, M., Okamoto, T., Yuyama, S.: Moment tensor analysis of AE for cracking mechanisms in concrete. ACI Struct. J. 95, 87–95 (1998)

    Google Scholar 

  25. Fan, M., Qi, G.: On evaluating lossy acquisitions of the responses of material hierarchical structures to the applied stress. Mech. Syst. Signal Process. 37, 455–466 (2013)

    Article  Google Scholar 

  26. Chang, P.C., Flatau, A., Liu, S.C.: Health monitoring of civil infrastructure. Struct. Health Monit. 2, 257–267 (2003)

    Article  Google Scholar 

  27. Brownjohn, J.M.W.: Structural health monitoring of civil infrastructure. Philos. Trans. R. Soc. A 365, 589–622 (2007)

    Article  Google Scholar 

  28. Yan, R., Gao, R.X.G.: Hilbert–Huang transform-based vibration signal analysis for machine health monitoring. IEEE Trans. Instrum. Meas. 55, 2320–2329 (2006)

    Article  Google Scholar 

  29. Greitzer, F., Pawlowski, R.A.: Embedded prognostics health monitoring. In: International Instrumentation Symposium. San Diego, CA (2002)

  30. Vecer, P., Kreidl, M., Šmíd, R.: Condition indicators for gearbox condition monitoring systems. Acta Polytech. 45, 35–43 (2005)

    Google Scholar 

  31. Balageas, D., Fritzen, C.-P., Güemes, A.: Introduction to Structural Health Monitoring. Wiley, ISTE, London (2006)

  32. Giurgiutiu, V., Zagrai, A., Bao, J.J.: Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct. Health Monit. 1, 41–61 (2002)

    Article  Google Scholar 

  33. Bassim, M.N., Lawrence, S.S., Liu, C.D.: Detection of the onset of fatigue crack growth in rail steels using acoustic emission. Eng. Fract. Mech. 47, 207–214 (1994)

    Article  Google Scholar 

  34. Beattie, A.G.: Acoustic Emission, Principles and Instrumentation, p. 141. Ed: Sandia National Lab, Report SAND82-2825 (1983)

  35. Berkovits, A., Fang, D.: Study of fatigue crack characteristics by acoustic emission. Eng. Fract. Mech. 51, 401–416 (1995)

    Article  Google Scholar 

  36. Davies, J., Tse, M., Harris, W.: Monitoring the integrity of the cement–metal interface of total joint components in vitro using acoustic emission and ultrasound. J. Arthroplast. 11, 549–601 (1996)

    Article  Google Scholar 

  37. Dunegan, H.L., Harris, D.O., Tatro, C.A.: Fracture analysis by use of acoustic emission. Eng. Fract. Mech. 1, 105–122 (1968)

    Article  Google Scholar 

  38. Hamstad, M.A.: Quality Control and Nondestructive Evaluation Techniques from Composites—Part IV: Acoustic Emission—A State-of-the-Art Review, p. 307. Ed: The U.S. Army Aviation Research and Development Command, Report No. TR 83-F-7 (1983)

  39. Holcomb, D.L., Costin, L.S.: Detecting damage surfaces in brittle materials using acoustic emissions. J. Appl. Mech. 53, 536–544 (1986)

    Article  Google Scholar 

  40. Kumar, R.V., Koltypin, Y., Cohen, Y.S., Cohen, Y., Aurbach, D., Palchik, O., Felner, I., Gedanken, A.: Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J. Mater. Chem. 10, 1125–1129 (2000)

    Article  Google Scholar 

  41. Lebrun, B., Jayet, Y., Baboux, J.: Pulsed eddy current signal analysis: application to the experimental detection and characterization of deep flaws in highly conductive materials. NDT E Int. 30, 163–170 (1997)

    Article  Google Scholar 

  42. Lee, Y., Wu, J., Chueh, Y., Chou, L.: Low-temperature growth and interface characterization of BiFeO\(_3\) thin films with reduced leakage current. Appl. Phys. Lett. 87, 172901 (2005)

    Article  Google Scholar 

  43. Qi, G., Barhorst, A.A.: On predicting the fracture behavior of CFR and GFR composites using wavelet-based AE techniques. Eng. Fract. Mech. 58, 363–385 (1997)

    Article  Google Scholar 

  44. Qi, G., Barhorst, A.A., Hashemi, J.: Discrete wavelet decomposition of AE signals from CFR composites. Compos. Sci. Technol 57, 389–403 (1997)

    Article  Google Scholar 

  45. Qi, G., Fan, M., Lewis, G., Wayne, S.F.: An innovative multi-component variate that reveals hierarchy and evolution of structural damage in a solid: application to acrylic bone cement. J. Mater. Sci. Mater. Med. 23, 217–228 (2012)

    Article  Google Scholar 

  46. Qi, G., Li, J.: Experimental-computational solution to fatigue induced microcrack source localization in cemented hip arthroplasty models. NDT E Int. 40, 378–389 (2007)

    Article  Google Scholar 

  47. Qi, G., Li, J., Mann, K.A., Mouchon, W.P., Hamstad, M.A., Salehi, A., Whitten, S.A.: 3D real time methodology monitoring cement failures in THA. J. Biomed. Mater. Res. A 71, 391–402 (2004)

    Article  Google Scholar 

  48. Qi, G., Li, J., Mouchon, W.P., Lewis, G.: Defect-induced fatigue microcrack formation in cement mantle. J. Biomed. Mater. Res. A 75, 414–424 (2005)

    Article  Google Scholar 

  49. Qi, G., Li, J.Y., Fan, M., Li, J.H., Wayne, S.F.: Assessment of statistical responses of multi-scale damage events in an acrylic polymeric composite to the applied stress. Probab. Eng. Mech. 33, 103–115 (2013)

    Article  Google Scholar 

  50. Qi, G., Mouchon, W.P., Tan, T.E.: How much can a vibrational diagnostic tool reveal in total hip arthroplasty loosening? Clin. Biomech. (Bristol, Avon) 18, 444–458 (2003)

    Article  Google Scholar 

  51. Yu, F., Nagy, P.B.: Simple analytical approximations for eddy current profiling of the near-surface residual stress in shot-peened metals. J. Appl. Phys. 96, 1257–1266 (2004)

    Article  Google Scholar 

  52. Yu, F., Nagy, P.B.: Dynamic piezoresistivity calibration for eddy current nondestructive residual stress measurements. J. Nondestruct. Eval. 24, 143–151 (2005)

    Article  Google Scholar 

  53. Evans, A.G., Linzer, M., Russell, L.R.: Acoustic emission and crack propagation in polycrystalline alumina. Mater. Sci. Eng. 15, 253–261 (1974)

    Article  Google Scholar 

  54. Nagy, P.B.: Non-destructive methods for materials’ state awareness monitoring. Insight Nondestruct. Test. Cond. Monit. 52, 61–71 (2010)

    Article  Google Scholar 

  55. Nagy, P.B., Adler, L.: Nondestructive evaluation of adhesive joints by guided waves. J. Appl. Phys. 66, 4658–4663 (1989)

    Article  Google Scholar 

  56. Nagy, P.B., Adler, L.: Acoustic material signature from frequency analysis. J. Appl. Phys. 67, 3876–3878 (1990)

    Article  Google Scholar 

  57. Nagy, P.B., Qu, J., Jacobs, L.J.: Finite-size effects on the quasistatic displacement pulse produced by an acoustic tone burst propagating through a solid specimen with quadratic nonlinearity. J. Acoust. Soc. Am. 134, 1760–1774 (2013)

    Article  Google Scholar 

  58. Ng, E.T., Qi, G.: Investigation of fatigue crack propagation behavior of bone cement by wavelet based acoustic emission analysis. Eng. Fract. Mech. 68, 1477–1492 (2001)

    Article  Google Scholar 

  59. Ni, Q.Q., Jinen, E.: Acoustic emission and fracture of carbon fiber reinforced thermosoftening plastic (CFRTP) materials under monotonic tensile loading. Eng. Fract. Mech. 45, 611–625 (1993)

    Article  Google Scholar 

  60. Qi, G.: Statistical ensemble interactions in microstructures where damage events present. Presented at the 12th international conference on fracture and damage mechanics, Alghero, Sardia, Italy (2013)

  61. Qi, G.: Acoustic emission: to embrace a leading role in the mainstream science: Innovation, challenge, and accountability in the era of computational & data-enabled science and engineering. Presented at the 2nd world congress on acoustic emission. Shanghai, China (2013)

  62. Qi, G., Ng, E.T.: A new method to evaluate material fatigue behavior. J. Mater. Sci. 36, 2483–2489 (2000)

    Article  Google Scholar 

  63. Qi, G., Wayne, S.F., Penrose, O., Lewis, G., Hochstein, J.I., Mann, K.A.: Probabilistic characteristics of random damage events and their quantification in acrylic bone cement. J. Mater. Sci. Mater. Med. 21, 2915–2922 (2010)

    Article  Google Scholar 

  64. López-Ruiz, R., Mancini, H.L., Calbet, X.: A statistical measure of complexity. Phys. Lett. A 209, 321–326 (1995)

    Article  Google Scholar 

  65. Garcimartin, A., Guarino, A., Bellon, L., Ciliberto, S.: Statistical properties of fracture precursors. Phys. Rev. Lett. 79, 3202–3205 (1997)

    Article  Google Scholar 

  66. Fujino, Y., Nambu, S., Enoki, M.: AE behavior of smart stress memory patch after variable amplitude loading. Mod. Phys. Lett. B 22, 1105–1110 (2008)

    Article  Google Scholar 

  67. Jinen, E.: The determination of G\(_{\rm c}\) fracture touchness values for short carbon fiber reinforced nylon 66 (FRTP) by acoustic emission. Eng. Fract. Mech. 21, 157–171 (1985)

  68. Hauser, J.J.: Effect of nonmagnetic localized states in Al films with enhanced Tc. Phys. Rev. B 5, 1830–1833 (1971)

    Article  Google Scholar 

  69. Carreon, H., Nagy, P.B., Nayfeh, A.H.: Thermoelectric detection of spherical tin inclusions in copper by magnetic sensing. J. Appl. Phys. 88, 6495–6500 (2000)

    Article  Google Scholar 

  70. Rizos, P.F., Aspragathos, N., Dimarogonas, A.D.: Identification of crack location and magnitude in a cantilever beam from the vibration modes. J. Sound Vib. 138, 381–388 (1990)

    Article  Google Scholar 

  71. McConnell, K.G., Varoto, P.S.: Vibration Testing: Theory and Practice, 2nd edn. Wiley, New York, NY (1995)

  72. Salawu, O.S., Williams, C.: Bridge assessment using forced-vibration testing. J. Struct. Eng. 121, 161–173 (1995)

    Article  Google Scholar 

  73. Rose, J.L., Nagy, P.B.: Ultrasonic waves in solid media. J. Acoust. Soc. Am. 107, 1807 (2000)

    Article  Google Scholar 

  74. Rho, J.Y., Ashman, R.B., Turmer, C.H.: Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J. Biomech. 26, 111–119 (1993)

    Article  Google Scholar 

  75. Tattersall, H.G.: The ultrasonic pulse-echo technique as applied to adhesion testing. J. Phys. D Appl. Phys. 6, 819–832 (1973)

    Article  Google Scholar 

  76. McMaster, R.C.: Nondestructive Testing Handbook, 2nd edn. ASNT, Columbus, OH (1982)

    Google Scholar 

  77. Hardy, H.R.J.: Acoustic Emission Microseismic Activity Volume 1: Principles, Techniques and Geotechnical Applications, vol. 1. Taylor and Francis, Lisse (2003)

    Book  Google Scholar 

  78. Callister Jr, W.D., Rethwisch, D.J.: Materials Science and Engineering, 8th edn. Wiley, New York (2010)

    Google Scholar 

  79. Pujol, J.: Elastic Wave Propagation and Generation in Seismology. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  80. Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis approach. SIGKDD Explor. 14, 21–28 (2013)

    Article  Google Scholar 

  81. Dechaumphai, E., Zhang, Z., Siwak, N.P., Ghodssi, R., Li, L.: Resonant frequency of gold/polycarbonate hybrid nano resonators fabricated on plastics via nano-transfer printing. Nanoscale Res. Lett. 6, 90 (2011)

    Article  Google Scholar 

  82. Li, J., Qi, G.: Improving source location accuracy of acoustic emission in complicated structures. J. Nondestruct. Eval. 28, 1–8 (2009)

    Article  Google Scholar 

  83. Li, J.H.: A 3D Acoustic Emission Based Microcrack Source Localization Method and Its Biomechanical Application, PhD, Mechanical Engineering, University of Memphis and University of Tennessee Health Science Center Memphis, Memphis (2006)

  84. Andrews, D.F.: Plots of high dimensional data. Biometrics 28, 125–136 (1972)

    Article  Google Scholar 

  85. Manly, B.F.J.: Multivariate Statistical Methods: A Primer. Chapman & Hall/CRC, London (2000)

    Google Scholar 

  86. Qi, G., Fan, M., Wayne, S.F., Li, J.Y.: Acquisition, processing and modeling of the stress-response random damage in acrylic polymer composites: a case study of data-enabled science. Mech. Syst. Signal Process. (2013)

  87. Beaulieu, K.P.: MS Hardcopy and Ecopy, Mechanical Engineering. The University of Memphis, Memphis (2013)

    Google Scholar 

  88. Beaulieu, K.: Characterization of cast-iron micro damage: its evolution and impact on material properties. Master of Science, Mechanical Engineeringm University of Memphis, Memphis, TN (2013)

  89. Wang, Z., Willett, P., DeAguiar, P.R., Webster, J.: Neural network detection of grinding burn from acoustic emission. Int. J. Mach. Tools Manuf. 41, 283–309 (2001)

    Article  Google Scholar 

  90. Xiao, H., Nagy, P.B.: Enhanced ultrasonic detection of fatigue cracks by laser-induced crack closure. J. Appl. Phys. 83, 7453–7460 (1998)

    Article  Google Scholar 

  91. Hall, D., Llinas, J.: An introduction to multisensor data fusion. Proc. IEEE 85, 6–23 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

Qi wishes to thank for the partial financial support provided by a Grant, 11272234, of the Chinese National Natural Science Foundation, and an endowed visiting chair-professorship at Tianjin University of Science and Technology by the municipal government of Tianjin, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, G., Wayne, S.F. A Framework of Data-Enabled Science for Evaluation of Material Damage Based on Acoustic Emission. J Nondestruct Eval 33, 597–615 (2014). https://doi.org/10.1007/s10921-014-0255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0255-7

Keywords

Navigation