Skip to main content
Log in

Diffraction of Elastic Waves by a Spherical Inclusion with an Anisotropic Graded Interfacial Layer and Dynamic Stress Concentrations

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Scattering of compressional waves in multiphase metal matrix composites containing spherical particles with spherically isotropic graded interfacial layers is investigated using a state-space approach. A continuous transition from the particle to the matrix with the change of volume fraction of one of the constituents is assumed to exist across the thickness of the interphase zone. A simplified multilayer model for the interphase complications including both anisotropy and inhomogeneity is considered. Taylor’s expansion theorem is employed to solve a modal state equation leading to a global transfer matrix that directly links the boundary conditions at the outer surface of the interface layer to those at the inner surface. Numerical calculations reveal the important effects of interphase anisotropy and inhomogeneity on the total scattering cross section and dynamic stress concentrations for a moderately wide range of frequencies and interface layer thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. H. Pao and C. C. Mow, Diffraction of Elastic Waves and Dynamic Stress Concentration, 1973, Crane, Russak & Company Inc., New York.

    Google Scholar 

  2. G. C. Gaunaurd, Elastic and acoustic resonance wave scattering, Appl. Mech. Rev. 42, pp. 143–192 (1989).

    Article  Google Scholar 

  3. Z. Hashin, Analysis of composite materials—a survey, J. Appl. Mech. 50, pp. 481–505 (1983).

    Article  MATH  Google Scholar 

  4. C. Ying and R. Truell, Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid, J. Appl. Phys. 27, pp. 1086–1097 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  5. N. Einspruch, E. Witterholt, and R. Truell, Scattering of a plane transverse wave by a spherical obstacle in an elastic medium, J. Appl. Phys. 31, pp. 1806–818 (1960).

    Article  MathSciNet  Google Scholar 

  6. A. Clebsch, Ueber die reflection an einer kugelfäche, Crelle's Journal 61, pp. 195–262 (1863).

    MATH  Google Scholar 

  7. D. L. Jain and R. P. Kanwal, Scattering of elastic waves by an elastic sphere, Int. J. Eng. Sci. 18, pp. 1117–1127 (1980).

    Article  MATH  Google Scholar 

  8. M. K. Hinders, Elastic wave scattering from an elastic sphere, Il Nuovo Cimento 106B, pp. 799–818 (1991).

    Google Scholar 

  9. J.-P. Sessarego, J. Sageloli, R. Guillermin, and H. Uberall, Scattering by an elastic sphere embedded in an elastic isotropic medium, J. Acoust. Soc. Am. 104, pp. 2836–2844 (1998).

    Article  Google Scholar 

  10. P. Olsson, S. K. Datta, and A. Bostrom, Elastodynamic scattering from inclusions surrounded by thin interface layers, J. Appl. Mech. 57, pp. 672–676 (1990).

    Google Scholar 

  11. E. J. Garboczi and J. G. Berryman, Elastic moduli of a material containing composite inclusions: Effective medium theory and finite element computations, Mech. Mat. 33, pp. 455–470 (2001).

    Article  Google Scholar 

  12. Z. Hashin and B. W. Rosen, The elastic moduli of reinforced-reinforced materials, J. Appl. Mech. 31, pp. 223–228 (1964).

    Google Scholar 

  13. E. Herve and A. Zaoui, N-layered inclusion-based micromechanical modeling, Int. J. Eng. Sci. 31, pp. 1–10 (1993).

    Article  MATH  Google Scholar 

  14. Z. Hashin and P. J. M. Monteiro, An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste, Cem. Conc. Res. 32, pp. 1291–1300 (2002).

    Article  Google Scholar 

  15. J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. London A241, pp. 376–396 (1957).

    MathSciNet  Google Scholar 

  16. Z. Hashin and S. Shtrikman, Note on a variational approach to the theory of composite elastic materials, J. Franklin Inst. 271, pp. 336–341 (1961).

    Article  Google Scholar 

  17. J. M. Torralba, F. Velasco, C. E. Costa, I. Vergara, and D. Caceres, Mechanical behavior of the interphase between matrix and reinforcement of al 2014 matrix composite reinforced with (Ni3Al)p, Composites Part A 33, pp. 427–434 (2002).

    Article  Google Scholar 

  18. S. C. George and S. Thomas, Transport phenomena through polymeric systems, Prog. Polymer Sci. 26(6), pp. 985–1017 (2001).

    Article  Google Scholar 

  19. C. C. Kiristsi and N. K. Anifantis, Load carrying characteristcs of short fibre composites containing a heterogeneous interphase region, Comput. Mat. Sci. 20, 86–97 (2001).

    Article  Google Scholar 

  20. A. S. Nielsen and R. Pyrz, Fibre failure due to thermal residual stresses in model polymer based composites, Proc IUTAM Symp on Analytical and Computational Fracture Mechanics of Non-Homogeneous Materials, Cardiff, UK. pp. 333–342, (2002),

  21. H. Sato and Y. Shindo, Multiple scattering of plane elastic waves in a particle-reinforced-composite medium with graded interfacial layers, Mech. Mat. 35, pp. 83–106 (2003).

    Article  Google Scholar 

  22. Y. Shindo, H. Nozaki, and S. K. Datta, Effect of interface layers on elastic wave propagation in a metal matrix composite reinforced by particles, J. Appl. Mech. 62, pp. 178–185 (1995).

    Google Scholar 

  23. W. Wang and I. Jasiuk, Effective elastic constants of particulate composites with inhomogeneous interphase, J. Compos. Mater., 32, pp. 1391–424 (1998).

    Google Scholar 

  24. M. S. Ozmusul and R. C. Picu, Elastic Moduli of particulate composites with graded filler-matrix interfaces, Polymer Composites 23, pp. 110–119 (2002).

    Article  Google Scholar 

  25. Y. Li, J. Song, and Z. Zhang, The heterogeneous constitutive theory of the generalized functionally graded materials structure, Mat. Sci. Forum 423–425, pp. 777–784 (2003).

    Google Scholar 

  26. R. M. Christensen, Mechanics of Composite Materials, John Wiley and Sons, (New York, 1979).

    MATH  Google Scholar 

  27. A. H. Nayfeh, Wave Propagation in Layered Anisotropic Media, (Elsevier, Amsterdam, 1995).

    MATH  Google Scholar 

  28. J. Mittleman, R. Roberts, and R. B. Thompson, Scattering of longitudinal elastic waves from an anisotropic spherical shell, J. Appl. Mech. 62, pp. 150–158 (1995).

    MATH  Google Scholar 

  29. M. J. P. Musgrave, The propagation of elastic waves in crystals and other anisotropic media, Report on progress in physics 22, pp. 74–96 (1959).

    Article  Google Scholar 

  30. A. K. Mal and S. K. Bose, Dynamic moduli of a suspension of imperfectly bonded spheres, Proc. Cambridge Philos. Soc. 76, pp. 578–600 (1974).

    Article  Google Scholar 

  31. S. K. Datta, H. M. Ledbetter, Y. Shindo, and A. H. Shah, Phase velocity and attenuation of plane elastic waves in a particulate-reinforced composite medium, Wave Motion 10, pp. 171–182 (1988).

    Article  MATH  Google Scholar 

  32. Y. Shindo, H. Nozaki, and R. Kusumi, Phase Velocity and Attenuation of plane elastic waves in a particle-reinforced metal matrix composite with interfacial layers, Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 57, pp. 1561–1568, (1991).

  33. K. Kiriaki, D. Polyzos, and M. Valavanides, Low-frequency scattering of coated spherical obstacles, J. Eng. Math. 31, pp. 379–395 (1997).

    Article  MATH  Google Scholar 

  34. A. M. Baird, F. H. Kerr, and D. J. Townend, Wave Propagation in a viscoelastic medium containing fluid-filled microspheres, J. Acoust. Soc. Am. 105, pp. 1527–1538 (1999).

    Article  Google Scholar 

  35. M. R. Haberman, Y. H. Berthelot, M. Cherkaoui, and J. Jarzynski, Micromechanical modeling of viscoelastic voided composites in the low-frequency approximation, J. Acoust. Soc. Am. 112, pp. 1937–1943 (2002).

    Article  Google Scholar 

  36. P. J. Wei and Z. P. Huang, Dynamic effective properties of the particle-reinforced composites with the viscoelastic interphase, Int. J. Solids Struct. 41, pp. 6993–7007 (2004).

    Article  MATH  Google Scholar 

  37. A. Pavan, Stress and strength analysis in and around composite inclusions in polymer matrices, Role of the Polymeric Matrix in the Processing and Structural Properties of Composite Materials (Proceedings of a Joint US-Italy Symposium on Composite Materials), Rome, Italy; NSF, Washington, DC, USA, pp. 529–543, (1983).

  38. C.-L. Hu and M. N. Rahaman, Factors controlling the sintering of ceramic particulate composites. II. coated inclusion particles, J. Am. Ceramic Soc. 75, pp. 2066–2070 (1992).

    Article  Google Scholar 

  39. M. Cherkaoui, H. Sabar, and M. Berveiller, Micromechanical approach of the coated inclusion problem and applications to composite materials, J. Eng. Mat. Tech. 116, pp. 274–278 (1994).

    Google Scholar 

  40. M. Cherkaoui, D. Muller, H. Sabar, and M. Berveiller, Thermoelastic behavior of composites with coated reinforcements: A micromechanical approach and applications, Comput. Mat. Sci. 5, pp. 45–52 (1996).

    Article  Google Scholar 

  41. Y. Huang, K. X. Hu, X. Wei, and A. Chandra, Generalized self-consistent mechanics method for composite materials with multiphase inclusions, J. Mech. Phys. Solids 42, pp. 491–504 (1994).

    Article  MATH  Google Scholar 

  42. L. Dai, Z. Huang, and R. Wang, Explicit expression of the effective moduli for composite materials filled with coated inclusions, Acta Mech. Sinica 14, pp. 37–52 (1998).

    Article  Google Scholar 

  43. A. Aboutajeddine and T. Vu-Khanh, Effective mechanical properties of materials with coated inclusions, J. Thermoplastic Composite Mat. 14, pp. 225–243 (2001).

    Article  Google Scholar 

  44. Y. P. Qiu and G. J. Weng, On the application of Mori-Tanaka's theory involving transversely isotropic spheroidal inclusions, Int. J. Eng. Sci. 28, pp. 1121–1137 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  45. T. Chen, Thermoelastic properties and conductivity of composites reinforced by spherically anisotropic particles, Mech. Mat. 14, pp. 257–268 (1993).

    Article  Google Scholar 

  46. L.-H. He and Z.-Q. Cheng, Correspondence relations between the effective thermoelastic properties of composites reinforced by spherically anisotropic particles, Int. J. Eng. Sci. 34, pp. 1–8 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  47. Q.-C. He and Y. Benveniste, Exactly solvable spherically anisotropic thermoelastic microstructures, J. Mech. Phys. Solids 52, pp. 2661–2682 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  48. T. Hata, Thermal stress-focusing effect in a transversely isotropic spherical zirconia inclusion in an infinite elastic medium caused by impact cooling, J. Thermal Stresses 26, pp. 1125–1136 (2003).

    Google Scholar 

  49. V. I. Kushch and I. Sevostianov, Effective elastic properties of the particulate composite with transversely isotropic phases, Int. J. Solids Struct. 41, pp. 885–906 (2004).

    Article  MATH  Google Scholar 

  50. J. D. Achenbach, Wave Propagation in Elastic Solids, (North-Holland, New York, 1976).

    MATH  Google Scholar 

  51. S. M. Hasheminejad and N. Safari, Acoustic Scattering from viscoelastically coated spheres and cylinders in viscous fluids, J. Sound Vib. 280, pp. 101–125 (2005).

    Article  Google Scholar 

  52. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, (Washington DC, 1964).

    MATH  Google Scholar 

  53. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body, (Mir Publishers, Moscow, 1981).

    MATH  Google Scholar 

  54. H. J. Ding, J. Liang, D. Q. Zou, and W. Q. Chen, Transversely Isotropic Elasticity, Zhejiang University Press, (Hangzhou, 1997).

    Google Scholar 

  55. H. J. Ding and W. Q. Chen, Nonaxisymmetric free vibrations of a spherically isotropic spherical shell embedded in an elastic medium, Int. J. Solids Struct. 33, pp. 2575–2590 (1996).

    Article  MATH  Google Scholar 

  56. H. J. Ding, Y. J. Ren, D. Q. Zou, and W. Q. Chen, Displacement method of elasticity problems in spherically isotropic media, Acta Mech. Sinica 26, pp. 186–197 (1994).

    Google Scholar 

  57. W. Q. Chen and H. J. Ding, Free vibration of multi-layered spherically isotropic hollow spheres, Int. J. Mech. Sci. 43, pp. 667–680 (2001).

    Article  MATH  Google Scholar 

  58. L. I. Tuchinskii, Elastic constants of pseudoalloys with a skeletal structure, Poroshkovaya Metallurgiya 247(7), pp. 85–92 (1983).

    Google Scholar 

  59. M. K. Hinders, B. A. Rhodes, and T. M. Fang, Particle-loaded composites for acoustic anechoic coatings, J. Sound Vib 185(2), pp. 219–246 (1995).

    Article  MATH  Google Scholar 

  60. H. Sato and Y. Shindo, Diffractions of elastic waves by a circular inclusion with a nonhomogeneous interface layer and dynamic stress concentrations, Proceedings of the 1999 48th Japan National Congress on Theoretical and Applied Mechanics (NCTAM), 48, Tokyo, Japan, pp. 81–94, (1999).

    Google Scholar 

  61. D. Brill and G. Gaunaurd, Resonance theory of elastic waves ultrasonically scattered from an elastic sphere, J. Acoust. Soc. Am. 81, pp. 1–21 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed M. Hasheminejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasheminejad, S.M., Maleki, M. Diffraction of Elastic Waves by a Spherical Inclusion with an Anisotropic Graded Interfacial Layer and Dynamic Stress Concentrations. J Nondestruct Eval 25, 67–81 (2006). https://doi.org/10.1007/s10921-006-0006-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-006-0006-5

Keywords

Navigation