Skip to main content

Advertisement

Log in

Effects of the microstructure and density profiles on wave propagation across an interface with material properties

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The characterization of the interphase condition between two materials is current in mechanics. In general, its modeling is achieved by considering an interface with only purely elastic properties. In this paper, following previous works, also inertial interface properties are taken into account. For sufficiently low-frequency regime, we investigate two density profiles (affine and quadratic), for the interphase. Moreover, the interface and the interphase are placed between two solids with different characteristics. The first one is non-dispersive, while for the second one three cases are considered: (a) solid without microstructure, i.e., a Cauchy continuum, (b) solid with microstructure characterized by normal dispersion, i.e., a strain gradient continuum, and (c) by anomalous dispersion. The reflection coefficients are plotted for each case. These results are evaluated with respect to a benchmark finite elements simulation of the finite heterogeneous interphase, and the error is discussed. It is shown that the effects of microstructure can be appreciated at higher frequencies and that the proposed model results to be accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abd-alla, A.N., Alshaikh, F., Del Vescovo, D., Spagnuolo, M.: Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. J. Therm. Stress. 40(9), 1079–1092 (2017)

    Article  Google Scholar 

  2. Auffray, N., Dirrenberger, J., Rosi, G.: A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids Struct. 69–70, 195–206 (2015)

    Article  Google Scholar 

  3. Benveniste, Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54(4), 708–734 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33(6), 309–323 (2001)

    Article  Google Scholar 

  5. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical simulation of two-dimensional wave propagation in functionally graded materials. Eur. J. Mech. A/Solids 22(2), 257–265 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berezovski, A., Giorgio, I., Corte, A.D.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids 21(1), 37–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bigoni, D., Movchan, A.: Statics and dynamics of structural interfaces in elasticity. Int. J. Solids Struct. 39(19), 4843–4865 (2002)

    Article  MATH  Google Scholar 

  8. Bilotta, A., Turco, E.: Elastoplastic analysis of pressure-sensitive materials by an effective three-dimensional mixed finite element. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 97(4), 382–396 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Boutin, C.: Microstructural effects in elastic composites. Int. J. Solids Struct. 33(7), 1023–1051 (1996)

    Article  MATH  Google Scholar 

  10. Brun, M., Guenneau, S., Movchan, A.B., Bigoni, D.: Dynamics of structural interfaces: filtering and focussing effects for elastic waves. J. Mech. Phys. Solids 58(9), 1212–1224 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Carcaterra, A., Dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaboche, J., Girard, R., Schaff, A.: Numerical analysis of composite systems by using interphase/interface models. Comput. Mech. 20(1–2), 3–11 (1997)

    Article  MATH  Google Scholar 

  13. Cowin, S.C.: Bone Mechanics Handbook, 2nd edn. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  14. Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Nino, S., D’Annibale, F., Luongo, A.: A simple model for damage analysis of a frame-masonry shear-wall system. Int. J. Solids Struct. 129, 119–134 (2017)

    Article  Google Scholar 

  16. Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3(1), 43–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Philos. Mag. 85(33–35), 4127–4141 (2005)

    Article  ADS  MATH  Google Scholar 

  18. Georgiadis, H., Vardoulakis, I., Velgaki, E.: Dispersive rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J. Elast. 74(1), 17–45 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giorgio, I., Andreaus, U., dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017)

    Article  Google Scholar 

  20. Giorgio, I., Andreaus, U., Scerrato, D., Braidotti, P.: Modeling of a non-local stimulus for bone remodeling process under cyclic load: application to a dental implant using a bioresorbable porous material. Math. Mech. Solids 22(9), 1790–1805 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016)

    Article  Google Scholar 

  22. Gouin, H.: Interfaces endowed with nonconstant surface energies revisited with the d’Alembert-Lagrange principle. Math. Mech. Complex Syst. 2(1), 23–43 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gu, S., He, Q.-C.: Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J. Mech. Phys. Solids 59(7), 1413–1426 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Haïat, G., Sasso, M., Naili, S., Matsukawa, M.: Ultrasonic velocity dispersion in bovine cortical bone: an experimental study. J. Acoust. Soc. Am. 124(3), 1811–1821 (2008)

    Article  ADS  Google Scholar 

  25. Haïat, G., Wang, H.-L., Brunski, J.: Effects of biomechanical properties of the bone-implant interface on dental implant stability: from in silico approaches to the patient’s mouth. Ann. Rev. Biomed. Eng. 16, 187–213 (2014)

    Article  Google Scholar 

  26. Hans, S., Boutin, C.: Dynamics of discrete framed structures: a unified homogenized description. J. Mech. Mater. Struct. 3(9), 1709–1739 (2008)

    Article  Google Scholar 

  27. Jeannin, L., Dormieux, L.: Poroelastic behaviour of granular media with poroelastic interfaces. Mech. Res. Commun. 83, 27–31 (2017)

    Article  Google Scholar 

  28. Lekszycki, T., dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Li, Y., Waas, A.M., Arruda, E.M.: A closed-form, hierarchical, multi-interphase model for composites–derivation, verification and application to nanocomposites. J. Mech. Phys. Solids 59(1), 43–63 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Liu, Y., Xu, N., Luo, J.: Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. J. Appl. Mech. 67(1), 41–49 (2000)

    Article  ADS  MATH  Google Scholar 

  31. Lombard, B., Piraux, J.: Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. J. Comput. Phys. 195(1), 90–116 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Madeo, A., Placidi, L., et al.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3d continua. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 92(1), 52–71 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  34. Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids. (2015). https://doi.org/10.1177/1081286515576821

  35. Niiranen, J., Kiendl, J., Niemi, A.H., Reali, A.: Isogeometric analysis for sixth-order boundary value problems of gradient-elastic kirchhoff plates. Comput. Methods Appl. Mech. Eng. 316, 328–348 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech Solids 19(5), 555–578 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pukánszky, B.: Interfaces and interphases in multicomponent materials: past, present, future. Eur. Polym. J. 41(4), 645–662 (2005)

    Article  Google Scholar 

  38. Rahali, Y., Giorgio, I., Ganghoffer, J., Dell’Isola, F.: Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rizzoni, R., Lebon, F.: Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases. Mech. Res. Commun. 51, 39–50 (2013)

    Article  Google Scholar 

  40. Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 93(12), 914–927 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech. A/Solids 69, 179–191 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rosi, G., Placidi, L., Nguyen, V.-H., Naili, S.: Wave propagation across a finite heterogeneous interphase modeled as an interface with material properties. Mech. Res. Commun. 84, 43–48 (2017)

    Article  Google Scholar 

  43. Selvadurai, A.P.S.: A mixed boundary value problem in potential theory for a bimaterial porous region: an application in the environmental geosciences. Math. Mech. Complex Syst. 2(2), 109–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Turco, E.: A strategy to identify exciting forces acting on structures. Int. J. Numer. Methods Eng. 64(11), 1483–1508 (2005)

    Article  MATH  Google Scholar 

  45. Wear, K.A.: Measurements of phase velocity and group velocity in human calcaneus. Ultrasound Med. Biol. 26(4), 641–646 (2000)

    Article  Google Scholar 

  46. Yaghoubi, S.T., Balobanov, V., Mousavi, S.M., Niiranen, J.: Variational formulations and isogeometric analysis for the dynamics of anisotropic gradient-elastic Euler–Bernoulli and shear-deformable beams. Eur. J. Mech. A/Solids 69, 113–123 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the Laboratoire International Associé Coss&Vita for the financial support via “Fédération Francilienne de Mécanique, CNRS FR2609.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rosi.

Additional information

Communicated by Francesco dell’Isola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scala, I., Rosi, G., Placidi, L. et al. Effects of the microstructure and density profiles on wave propagation across an interface with material properties. Continuum Mech. Thermodyn. 31, 1165–1180 (2019). https://doi.org/10.1007/s00161-018-0740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0740-9

Keywords

Navigation