Collins, L.M., Murphy, S.A., Bierman, K.L.: A conceptual framework for adaptive preventive interventions. Prevention science 5(3), 185–196 (2004)
Article
Google Scholar
Hardeman, W., Houghton, J., Lane, K., Jones, A., Naughton, F.: A systematic review of just-in-time adaptive interventions (Jitais) to promote physical activity. International Journal of Behavioral Nutrition and Physical Activity 16(1), 31 (2019)
Nahum-Shani, I., Smith, S.N., Spring, B.J., Collins, L.M., Witkiewitz, K., Tewari, A., Murphy, S.A.: Just-in-time adaptive interventions (Jitais) in mobile health: key components and design principles for ongoing health behavior support. Annals of Behavioral Medicine 52(6), 446–462 (2017)
Article
Google Scholar
Goldstein, S.P., Evans, B.C., Flack, D., Juarascio, A., Manasse, S., Zhang, F., Forman, E.M.: Return of the Jitai: applying a just-in-time adaptive intervention framework to the development of m-health solutions for addictive behaviors. International journal of behavioral medicine 24(5), 673–682 (2017)
Article
Google Scholar
Sarker, H., Sharmin, M., Ali, A.A., Rahman, M.M., Bari, R., Hossain, S.M., Kumar, S.: Assessing the availability of users to engage in just-in-time intervention in the natural environment. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 909–920 (2014)
Thomas, J.G., Bond, D.S.: Behavioral response to a just-in-time adaptive intervention (Jitai) to reduce sedentary behavior in obese adults: Implications for Jitai optimization. Health Psychology 34(S), 1261 (2015)
Yom-Tov, E., Feraru, G., Kozdoba, M., Mannor, S., Tennenholtz, M., Hochberg, I.: Encouraging physical activity in patients with diabetes: intervention using a reinforcement learning system. Journal of medical Internet research 19(10), e338 (2017)
Article
Google Scholar
Gönül, S., Namlı, T., Coşar, A., and Toroslu, İ.H.: A reinforcement learning based algorithm for personalization of digital, just-in-time, adaptive interventions. Artificial Intelligence in Medicine 115, 102062 (2021)
Aguilera, A., Figueroa, C.A., Hernandez-Ramos, R., Sarkar, U., Cemballi, A., Gomez-Pathak, L., Miramontes, J., Yom-Tov, E., Chakraborty, B., Yan, X., et al.: mhealth app using machine learning to increase physical activity in diabetes and depression: clinical trial protocol for the diamante study. BMJ open 10(8), e034723 (2020)
Forman, E.M., Kerrigan, S.G., Butryn, M.L., Juarascio, A.S., Manasse, S.M., Ontañón, S., Dallal, D.H., Crochiere, R.J., Moskow, D.: Can the artificial intelligence technique of reinforcement learning use continuously-monitored digital data to optimize treatment for weight loss? Journal of behavioral medicine 42(2), 276–290 (2019)
Article
Google Scholar
Rabbi, M., Aung, M.H., Zhang, M., Choudhury, T.: My behavior: automatic personalized health feedback from user behaviors and preferences using smartphones. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 707–718. ACM (2015)
Pellegrini, C.A., Pfammatter, A.F., Conroy, D.E., Spring, B.: Smartphone applications to support weight loss: current perspectives. Advanced health care technologies 1, 13 (2015)
Article
Google Scholar
Saunders, W., Sastry, G., Stuhlmüller, A., Evans, O.: Trial without error: Towards safe reinforcement learning via human intervention. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 2067–2069 (2018)
Zhou, M., Mintz, Y., Fukuoka, Y., Goldberg, K., Flowers, E., Kaminsky, P., Castillejo, A., Aswani, A.: Personalizing mobile fitness apps using reinforcement learning. In: CEUR workshop proceedings, vol. 2068. NIH Public Access (2018)
Tabatabaei, S.A., Hoogendoorn, M., van Halteren, A.: Narrowing reinforcement learning: Overcoming the cold start problem for personalized health interventions. In: International Conference on Principles and Practice of Multi-Agent Systems, pp. 312–327. Springer (2018)
Tomkins, S., Liao, P., Yeung, S., Klasnja, P., Murphy, S.: Intelligent pooling in thompson sampling for rapid personalization in mobile health (2019)
Gonul, S., Namli, T., Baskaya, M., Sinaci, A.A., Cosar, A., Toroslu, I.H.: Optimization of just-in-time adaptive interventions using reinforcement learning. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 334–341. Springer (2018)
Liao, P., Greenewald, K., Klasnja, P., Murphy, S.: Personalized heartsteps: A reinforcement learning algorithm for optimizing physical activity. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4(1), 1–22 (2020)
Article
Google Scholar
Ameko, M.K., Beltzer, M.L., Cai, L., Boukhechba, M., Teachman, B.A., Barnes, L.E.: Online contextual multi-armed bandits for mobile health interventions: A case study on emotion regulation. In: Fourteenth ACM Conference on Recommender Systems, pp. 249–258 (2020)
Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press (2018)
Kamphorst, B., Kalis, A.: Why option generation matters for the design of autonomous e-coaching systems. AI & SOCIETY 30(1), 77–88 (2015)
Article
Google Scholar
Tobias, R.: Changing behavior by memory aids: A social psychological model of prospective memory and habit development tested with dynamic field data. Psychological review 116(2), 408–438 (2009)
Article
Google Scholar
Zhang, C., Lakens, D., IJsselsteijn, W.A.: Theory integration for lifestyle behavior change in the digital age: An adaptive decision-making framework. Journal of Medical Internet Research 23(4), e17127 (2021)
Rubin, D.C., Hinton, S., Wenzel, A.: The precise time course of retention. Journal of Experimental Psychology: Learning, Memory, and Cognition 25(5), 1161–1176 (1999)
Google Scholar
Savage, L.J.: The foundations of statistics. Courier Corporation (1972)
Von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Bull. Amer. Math. Soc 51(7), 498{504 (1945)
Article
Google Scholar
Dunton, G.F., Liao, Y., Intille, S., Huh, J., Leventhal, A.: Momentary assessment of contextual influences on affective response during physical activity. Health Psychology 34(12), 1145 (2015)
Louro, M.J., Pieters, R., Zeelenberg, M.: Dynamics of multiple-goal pursuit. Journal of personality and social psychology 93(2), 174 (2007)
Article
Google Scholar
Mihajlovic, V., Petkovic, M.: Dynamic bayesian networks: A state of the art. University of Twente Document Repository (2001)
Google Scholar
Kaplan, W.: Advanced calculus. Pearson Education India (1952)
Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning 8(3–4), 229–256 (1992)
Google Scholar
Fujita, Y., Maeda, S.i.: Clipped action policy gradient. In: Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 80, pp. 1597–1606. PMLR, Stockholmsmässan, Stockholm Sweden (2018)
Wang, S., Scheider, S., Sporrel, K., Deutekom, M., Timmer, J., Kröse, B.: What are good situations for running? a machine learning study using mobile and geographical data. Frontiers in Public Health 8, 985 (2021)
Google Scholar
Wang, S., Sporrel, K., van Hoof, H., Simons, M., de Boer, R.D., Ettema, D., Nibbeling, N., Deutekom, M. and Kröse, B.: Reinforcement learning to send reminders at right moments in smartphone exercise application: A feasibility study. International Journal of Environmental Research and Public Health, 18(11), 6059 (2021)