Skip to main content

Advertisement

Log in

A Double Chaotic Layer Encryption Algorithm for Clinical Signals in Telemedicine

  • Mobile & Wireless Health
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Recently, telemedicine offers medical services remotely via telecommunications systems and physiological monitoring devices. This scheme provides healthcare delivery services between physicians and patients conveniently, since some patients can not attend the hospital due to any reason. However, transmission of information over an insecure channel such as internet or private data storing generates a security problem. Therefore, authentication, confidentiality, and privacy are important challenges in telemedicine, where only authorized users should have access to medical or clinical records. On the other hand, chaotic systems have been implemented efficiently in cryptographic systems to provide confidential and privacy. In this work, we propose a novel symmetric encryption algorithm based on logistic map with double chaotic layer encryption (DCLE) in diffusion process and just one round of confusion-diffusion for the confidentiality and privacy of clinical information such as electrocardiograms (ECG), electroencephalograms (EEG), and blood pressure (BP) for applications in telemedicine. The clinical signals are acquired from PhysioBank data base for encryption proposes and analysis. In contrast with recent schemes in literature, we present a secure cryptographic algorithm based on chaos validated with the most complete security analysis until this time. In addition, the cryptograms are validated with the most complete pseudorandomness tests based on National Institute of Standards and Technology (NIST) 800-22 suite. All results are at MATLAB simulations and all them show the effectiveness, security, robustness, and the potential use of the proposed scheme in telemedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. WHO: A health telematics policy in support of WHO’s Health-For-All strategy for global health development report of the WHO group consultation on health telematics. World Health Organization, 11-16 December, Geneva, Switzerland (1998)

  2. Vergeles-Blanca, J. M., La telemedicina. Desarrollo, ventajas y dudas. Búsqueda Bibliográfica. Internet y las Nuevas Tecnologías, 59–61 (2011)

  3. Chaudhry, S. A., Mahmood, K., Naqvi, H., Khan, M. K., An improved and secure biometric authentication scheme for telecare medicine information systems based on elliptic curve cryptography. J Med Syst 39(11): 1–12, 2015.

    Article  Google Scholar 

  4. Torres-García, A. A., Reyes-García, C. A., Villaseńor-Pineda, L., Ramírez-Cortés, J. M., Análisis de seńales electroencefalográficas para la clasificación de habla imaginada. Revista Mexicana de Ingeniería Biomédica 34(1): 23–39, 2013.

    Google Scholar 

  5. Cui, D.: A novel fingerprint encryption algorithm based on chaotic system and fractional fourier transform. International Conference on Machine Vision and Human-machine Interface, 168–171, 2010.

  6. Murillo-Escobar, M. A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R. M., Acosta Del Campo, O. R., A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process 109: 119–131, 2015.

    Article  Google Scholar 

  7. Murillo-Escobar, M. A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R. M., A robust embedded biometric authentication system based on fingerprint and chaotic encryption. Expert Syst Appl 42: 8198–8211, 2015.

    Article  Google Scholar 

  8. Patidar, V., Pareek, N. K., Sud, K. K., A new substitution-diffusion based image cipher using chaotic standard and logistic maps. Commun Nonlinear Sci 14: 3056–3075, 2009.

    Article  Google Scholar 

  9. Zhou, Y., Bao, L., PhilipChen, C., New 1d chaotic system for image encryption. Signal Process 97: 172–182, 2014.

    Article  Google Scholar 

  10. Khan, M. K., Zhang, J., Tian, L., Chaotic secure content-based hidden transmission of biometric templates. Chaos, Soliton Fract 32: 1749–1759, 2007.

    Article  Google Scholar 

  11. Murillo-Escobar, M. A., Abundiz-Pérez, F., Cruz-Hernández, C., and López-Gutiérrez R. M.: A novel symmetric text encryption algorithm based on logistic map. Proceedings of the International Conference on Communications, Signal Processing and Computers, 49–53, 2014.

  12. Murillo-Escobar, M. A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R. M., Implementation of an improved chaotic encryption algorithm for real-time embedded d systems by using a 32-bit microcontroller. Microprocess Microsy 45: 297–309, 2016.

    Article  Google Scholar 

  13. Murillo-Escobar M. A., Cardoza-Avendaño L., López-Gutiérrez R. M., and Cruz-Hernández C.: Cifrado caótico simétrico de ECG y EEG para aplicaciones en telemedicina. XVII CLCA Latin American Conference of Automatic Control, 612–617, 2016.

  14. Alvarez, G., and Li, S., Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurcat Chaos 16(8): 2129–2151, 2006.

    Article  Google Scholar 

  15. Chen, H.-M., Lo, J.-W., Yeh, C.-K., An efficient and secure dynamic ID-based authentication scheme for telecare medical information systems. J Med Syst 36(6): 3907–3915, 2012.

    Article  PubMed  Google Scholar 

  16. Hao, X., Wang, J., Yang, Q., Yan, X., Li, P., A chaotic map-based authentication scheme for telecare medicine information systems. J Med Syst 37(2): 1–7, 2013.

    Article  Google Scholar 

  17. Jiang, Q., Ma, J., Ma, Z., Li, G., A privacy enhanced authentication scheme for telecare medical information systems. J Med Syst 37(1): 1–8, 2013.

    Article  Google Scholar 

  18. Yan, X., Li, W., Li, P., Wang, J., Hao, X., Gong, P., A secure biometrics-based authentication scheme for telecare medicine information systems. J Med Syst 37(5): 1–6, 2013.

    Article  CAS  Google Scholar 

  19. Das, A. K., and Goswami, A., A secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care. J Med Syst 37(3): 1–16, 2013.

    Article  Google Scholar 

  20. Awasthi, A. K., and Srivastava, K., A biometric authentication scheme for telecare medicine information systems with nonce. J Med Syst 37(5): 1–4, 2013.

    Article  Google Scholar 

  21. Lin, H.-Y., Chaotic map based mobile dynamic ID authenticated key agreement scheme. Wireless Pers Commun 78: 1487–1494, 2014.

    Article  Google Scholar 

  22. Lu, Y., Li, L., Peng, H., Xie, D., Yang, Y., Robust and efficient biometrics based password authentication scheme for telecare medicine information systems using extended chaotic maps. J Med Syst 39(6): 1–10, 2015.

    Article  Google Scholar 

  23. Xie, Q., Zhang, J., Dong, N., Robust anonymous authentication scheme for telecare medical information systems. J Med Syst 37(2): 1–8, 2013.

    Article  Google Scholar 

  24. Yau, W.-C., and Phan, R.C.-W., Security analysis of a chaotic map-based authentication scheme for telecare medicine information systems. J Med Syst 37(6): 1–9, 2013.

    Article  Google Scholar 

  25. Kumari, S., Khan, M. K., Kumar, R., Cryptanalysis and improvement of A privacy enhanced scheme for telecare medical information systems. J Med Syst 37(4): 1–11, 2013.

    Article  Google Scholar 

  26. Mishra, D., Mukhopadhyay, S., Chaturvedi, A., Kumari, S., Khan, M. K., Cryptanalysis and improvement of Yan et al.’s biometric-based authentication scheme for telecare medicine information systems. J Med Syst 38(6): 1–12, 2014.

    Article  Google Scholar 

  27. Kim, K.-W., and Lee, J.-D., On the security of two remote user authentication schemes for telecare medical information systems. J Med Syst 38(5): 1–11, 2014.

    Article  Google Scholar 

  28. Jiang, Q., Ma, J., Lu, X., Tian, Y., Robust chaotic map-based authentication and key agreement scheme with strong anonymity for telecare medicine information systems. J Med Syst 38(2): 1–8, 2014.

    Article  Google Scholar 

  29. Wang, Z., Huo, Z., Shi, W., A dynamic identity based authentication scheme using chaotic maps for telecare medicine information systems. J Med Syst 39(1): 1–8, 2015.

    Google Scholar 

  30. Lee, C.-C., and Hsu, C.-W., A secure biometric-based remote user authentication with key agreement scheme using extended chaotic maps. Nonlinear Dyn 71: 201–211, 2013.

    Article  Google Scholar 

  31. Das, A. K., and Goswami, A., An enhanced biometric authentication scheme for telecare medicine information systems with nonce using chaotic hash function. J Med Syst 38(6): 1–19, 2014.

    Article  Google Scholar 

  32. Nayak, J., Subbanna Bhat, P., Acharya, U. R., Sathish Kumar, M., Efficient storage and transmission of digital fundus images with patient information using reversible watermarking technique and error control codes. J Med Syst 33: 163–171, 2009.

    Article  PubMed  Google Scholar 

  33. Nayak, J., Subbanna Bhat, P., Acharya, U. R., Niranjan, U. C., Simultaneous storage of medical images in the spatial and frequency domain: a comparative study. BioMed Eng OnLine 3: 1–10, 2004.

    Article  Google Scholar 

  34. Acharya, U. R., Niranjanb, U. C., Iyengarc, S. S., Kannathala, N., Mina, L. C., Simultaneous storage of patient information with medical images in the frequency domain. Comput Meth Prog Bio 76: 13–19, 2004.

    Article  Google Scholar 

  35. Acharya, U. R., Subbanna Bhat, P., Kumarc, S., Mina, L. C., Transmission and storage of medical images with patient information. Comput Biol Med 33: 303–310, 2003.

    Article  Google Scholar 

  36. Acharya, U. R., Subbanna Bhat, P., Kumarc, S., Mina, L. C., Compact storage of medical images with patient information. IEEE T Inf Technol B 5(4): 320–323, 2001.

    Article  CAS  Google Scholar 

  37. Raeiatibanadkooki, M., Quchani, S. R., KhalilZade, M., Bahaadinbeigy, K., Compression and encryption of ECG signal using wavelet and chaotically huffman code in telemedicine application. J Med Syst 40(3): 1–8, 2016.

    Article  Google Scholar 

  38. Lin, C.-F., Chaotic visual cryptosystem using empirical mode decomposition algorithm for clinical EEG signals. J Med Syst 40(3): 1–10, 2016.

    Google Scholar 

  39. Kenfack, G., and Tiedeu, A., Chaos-based encryption of ECG signals: experimental results. J Biomed Sci Eng 7: 368–379, 2014.

    Article  Google Scholar 

  40. Lin, C.-F., Shih, S.-H., Zhu, J.-D., Chaos based encryption system for encrypting electroencephalogram signals. J Med Syst 38(5): 1–10, 2014.

    CAS  Google Scholar 

  41. Chen, C.-K., Lin, C.-L., Chiang, C.-T., Lin, S.-L., Personalized information encryption using ECG signals with chaotic functions. Inform Sciences 193: 125–140, 2012.

    Article  Google Scholar 

  42. Lin, C.-F., and Chang, C.-Y., Implementation of a chaos-based encryption software for electroencephalogram signals. Advances in ECWAC 1: 147–150, 2012.

    Google Scholar 

  43. Sufi, F., Han, F., Khalil, I., Hu, J., A chaos-based encryption technique to protect ECG packets for time critical telecardiology applications. Security Comm Networks 4: 515–524, 2011.

    Article  Google Scholar 

  44. Ahmad, M., Farooq, O., Datta, S., Sohail, S. S., Vyas A. L., and Mulvaney D.: 4th International Conference on Biomedical Engineering and Informatics, 1471–1475 (2011)

  45. Lin, C. F., and Wang, B. S. H., A 2D chaos-based visual encryption scheme for clinical EEG signals. J Mar Sci Technol 19(6): 666–672, 2011.

    Google Scholar 

  46. Parveen, S., Parashar, S., Izharuddin: Technique for providing security in medical signals, International Conference on Multimedia, Signal Processing and Communication Technologies, 68–71 (2011)

  47. Lin, C.-F., Chung, C.-H., Chen, Z.-L., Song, C.-J., Wang, Z.-X., A chaos-based unequal encryption mechanism in wireless telemedicine with error decryption. WSEAS Transaction on Systems 7(2): 49–55, 2008.

    Google Scholar 

  48. May, R. M., Simple mathematical models with very complicated dynamics. Nature 261: 459–467, 1976.

    Article  CAS  PubMed  Google Scholar 

  49. Wolf, A.: Quantifying chaos with Lyapunov exponents. Princeton University Press, Ch. 13, pp. 273–289 (1986)

  50. Sprott, J. C.: Lyapunov exponents. Chaos and time-series analysis Oxford University Press, Ch. 5 (2003)

  51. Arroyo, D., Alvarez, G., and Fernandez, V.: On the inadequacy of the logistic map for cryptographic applications. X Reunión Española sobre Criptología y Seguridad de la Información, 77–82, 2008.

  52. Cristian-Iulian, R., and Vasile-Gabriel, I., Aspects regarding chaotic maps hardware implementations. Revue Roumaine Des Sciences Techniques 52: 219–227, 2007.

    Google Scholar 

  53. Physionet.org (2016). PhysioBank ATM. Online, available on: https://physionet.org/cgi-bin/atm/ATM [visited on May 2016]

  54. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST special publication 800–22 (2001)

  55. Wang, Z., Lu, L., Bovik, A. C., Video quality assessment based on structural distortion measurement. Signal Process: Image Commun 19(2): 121–132, 2004.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the CONACYT, México under Research Grant 166654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cruz-Hernández.

Additional information

This article is part of the Topical Collection on Mobile & Wireless Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murillo-Escobar, M.A., Cardoza-Avendaño, L., López-Gutiérrez, R.M. et al. A Double Chaotic Layer Encryption Algorithm for Clinical Signals in Telemedicine. J Med Syst 41, 59 (2017). https://doi.org/10.1007/s10916-017-0698-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0698-3

Keywords

Navigation