Skip to main content

Advertisement

Log in

Chaos Based Encryption System for Encrypting Electroencephalogram Signals

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hao, X., Wang, J., Yang, Q., et al., A chaotic map-based authentication scheme for telecare medicine information systems. J. Med. Syst. 37:9919, 2013.

    Article  Google Scholar 

  2. Yau, W. C., and Phan, R. C. W., Security analysis of a chaotic map-based authentication scheme for telecare medicine information systems. J Med. Syst 37:9993, 2013.

    Article  Google Scholar 

  3. Jiang, Q., Ma, J., Lu, X., et al., Robust chaotic map-based authentication and key agreement scheme with strong anonymity for telecare medicine information systems. J Med. Syst 38:12, 2014.

    Article  Google Scholar 

  4. Lee, T. F., An efficient chaotic maps-based authentication and key agreement scheme using smartcards for telecare medicine information systems. J Med. Syst 37:9985, 2013.

    Article  Google Scholar 

  5. Lee, C. C., Hsu, C. W., Lai, Y. M., et al., An enhanced mobile-healthcare emergency system based on extended chaotic maps. J Med. Syst 37:9973, 2013.

    Article  Google Scholar 

  6. Brinkmann, B. H., Bower, M. R., Stengel, K. A., et al., Large-scale electrophysiology: Acquisition, compression, encryption, and storage of big data. J. Neurosci. Methods 180:185–192, 2009.

    Article  Google Scholar 

  7. Ahmad, M., Sohail, S. S., Farooq, O., et al., Chaos-based encryption of biomedical EEG signals using random quantization technique. Proc. 4th Int. Conf. Biomed. Eng. Informa 3:1471–1475, 2011.

    Google Scholar 

  8. Parveen, S., Parashar, S., and Izharuddin, Technique for providing security in medical signals. Proc. Int. Conf. Multimed. Sig. Process Commun. Technol. 68–71, 2011.

  9. Yang, M. Bourbakis, N, and Li, S., Data, image, video encryption. IEEE Potentials 23:28–34, 2004.

    Google Scholar 

  10. Ou, C. M., Design of block ciphers by simple chaotic functions. IEEE Comput. Intell. Mag 3:54–59, 2009.

    Article  Google Scholar 

  11. Kocarev, L., Chaos-based cryptography: A brief overview. IEEE Circ. Syst. Mag 1:6–21, 2001.

    Article  Google Scholar 

  12. Ford, J., What is chaos, that we should be mindful of it? In: Paul, D. (Ed.), The New Physics. Cambridge University Press, Cambridge, pp. 348–372, 1992.

    Google Scholar 

  13. Kotulski, Z., and Szczepanski, J., Discrete chaotic cryptography. Ann. Phys. 6:381–394, 1997.

    Article  MATH  Google Scholar 

  14. Baptista, M. S., Cryptography with chaos. Phys. Lett. A 240:50–54, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. Dachselt, F., and Schwarz, W., Chaos and cryptography. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 48:1498–1509, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  16. Marco, G., Kristina, K., and Wolfgang, S., Discrete-time chaotic encryption systems–Part I: Statistical design approach. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 44:963–970, 1997.

    Article  Google Scholar 

  17. Frank, D., and Kristina, W. S., Discrete-time chaotic encryption systems–Part III: Cryptographical analysis. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 45:983–988, 1998.

    Article  Google Scholar 

  18. Yang, T., Wu, W., and Chua, L. O., Cryptography based on chaotic systems. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 44:469–472, 1997.

    Article  MATH  Google Scholar 

  19. Zhou, H., and Ling, X. T., Problems with the chaotic inverse system encryption approach. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 44:268–271, 1997.

    Article  Google Scholar 

  20. Murali, K., Yu, H., Varadan, V., et al., Secure communication using a chaos based signal encryptionscheme. IEEE Trans. Comsumer Electron 47:709–714, 2001.

    Article  Google Scholar 

  21. Jakimoski, G., and Kocarev, L., Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 48:163–169, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  22. Kocarev, L., and Jakimoski, G., Logistic map as a block encryption algorithm. Phys. Lett. A 289:199–206, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  23. Masuda, N., and Aihara, K., Cryptosystems with discretized chaotic maps. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 49:28–40, 2002.

    Article  MathSciNet  Google Scholar 

  24. Wong, K. W., A fast chaotic cryptographic scheme with dynamic look-up table. Phys. Lett. A 298:238–242, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  25. Pareek, N. K., Patidar, V., and Sud, K. K., Discrete chaotic cryptography using external key. Phys. Lett. A 309:75–82, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  26. Liao, X., Pen, J., and Chen, G., A digital secure image communication scheme based on the chaotic Chebyshev map. Int. J. Commun. Syst 17:437–445, 2004.

    Article  Google Scholar 

  27. Yen, J. C., and Guo, J. I., Efficient hierarchical chaotic image encryption algorithm and its VLSI realisation. IEE Proc. Vis. Image Signal Proc 147:167–175, 2000.

    Article  Google Scholar 

  28. Masuda, N., Jakimoski, G., Aihara, A., et al., Chaotic block ciphers: From theory to practical algorithms. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 53:1341–1352, 2006.

    Article  MathSciNet  Google Scholar 

  29. Lin, C. F., Chang, W. T., and Li, C. Y., A chaos-based visual encryption mechanism in JPEG2000 medical images. J. Med. Biol. Eng. 27:144–149, 2007.

    Google Scholar 

  30. Lin, C. F., Chung, C. H., Chen, Z. L., et al., A chaos-based unequal encryption mechanism in wireless telemedicine with error decryption. WSEAS Trans. Syst 2:49–55, 2008.

    MathSciNet  Google Scholar 

  31. Lin, C. F., Mobile telemedicine–A survey study. J Med. Syst 36:511–520, 2012.

    Article  Google Scholar 

  32. Lin, C. F., Chung, C. H., and Lin, J. H., A chaos-based visual encryption mechanism for clinic EEG signals. Med. Biol. Eng. Comput 47:757–762, 2009.

    Article  Google Scholar 

  33. Lin, C. F., and Wang, B. S. H., A 2D chaos-based visual encryption scheme for clinical EEG signals. J. Mar. Sci. Technol. Taiwan 19:666–672, 2011.

    Google Scholar 

  34. Lin, C. F., Chaos-based 2D visual encryption mechanism for ECG medical signals. In: Thomas, S. C. (Ed.), Horizons in Computer Science Research, vol. 4. Nova, USA, pp. 205–217, 2012.

    Google Scholar 

  35. Lin, C.F., Shih, S.H., and Zhu, J.D., Implementation of an offline chaos-based EEG encryption software. Proc. IEEE 14th Int. Conf. Adv. Commun. Tech. 430–433, 2012.

  36. Lin, C.F., Shih, S.H., Zhu, J.D., et al., C# based EEG encryption system using chaos algorithm. Proc. 1st Int. Conf. Compl. Syst. Chaos (COSC’13). 59–62, 2013.

Download references

Acknowledgments

The authors acknowledge the support of the NSC 100-2221-E-019-019, NSC 101-2221-E-019-056 and the valuable comments of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Feng Lin.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CF., Shih, SH. & Zhu, JD. Chaos Based Encryption System for Encrypting Electroencephalogram Signals. J Med Syst 38, 49 (2014). https://doi.org/10.1007/s10916-014-0049-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0049-6

Keywords

Navigation