Skip to main content
Log in

An Adaptive Orthogonal Basis Method for Computing Multiple Solutions of Differential Equations with Polynomial Nonlinearities

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents an innovative approach, the Adaptive Orthogonal Basis Method, tailored for computing multiple solutions to differential equations characterized by polynomial nonlinearities. Departing from conventional practices of predefining candidate basis pools, our novel method adaptively computes bases, considering the equation’s nature and structural characteristics of7 the solution. It further leverages companion matrix techniques to generate initial guesses for subsequent computations. Thus this approach not only yields numerous initial guesses for solving such equations but also adapts orthogonal basis functions to effectively address discretized nonlinear systems. Through a series of numerical experiments, this paper demonstrates the method’s effectiveness and robustness. By reducing computational costs in various applications, this novel approach opens new avenues for uncovering multiple solutions to differential equations with polynomial nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Allgower, E.L., Sommese, A.J., Bates, D.J., Wampler, C.W.: Solution of polynomial systems derived from differential equations. Computing 76, 1–10 (2006)

    Article  MathSciNet  Google Scholar 

  2. Allgower, E.L., Cruceanu, S.G., Tavener, S.: Application of numerical continuation to compute all solutions of semilinear elliptic equations. Adv. Geom. 76, 1–10 (2009)

    MathSciNet  Google Scholar 

  3. Alpert, B.K., Rokhlin, V.: A fast algorithm for the evaluation of legendre expansions. SIAM J. Sci. Stat. Comput. 12, 158–179 (1991)

    Article  MathSciNet  Google Scholar 

  4. Chen, C.M., Xie, Z.Q.: Search extension method for multiple solutions of a nonlinear problem. Comput. Math. Appl. 47, 327–343 (2004)

    Article  MathSciNet  Google Scholar 

  5. Choi, Y.S., McKenna, P.J.: A mountain pass method for the numerical solution of semilinear elliptic problems. Nonlinear Anal. 20, 417–437 (1993)

    Article  MathSciNet  Google Scholar 

  6. Davis, H.T.: Introduction to nonlinear differential and integral equations. US Atomic Energy Commission (1960)

  7. Ding, Z.H., Costa, D., Chen, G.: A high-linking algorithm for sign-changing solutions of semilinear elliptic equations. Nonlinear Anal. 38, 151–172 (1999)

    Article  MathSciNet  Google Scholar 

  8. Du, Q., Zhang, L., Zheng, Z.Z.: Optimization-based shrinking dimer method for finding transition states. SIAM J. Sci. Comput. 38, A528–A544 (2016)

    Article  MathSciNet  Google Scholar 

  9. Farrell, P.E., Birkisson, A., Funke, S.W.: Deflation techniques for finding distinct solutions of nonlinear partial differential equations. SIAM J. Sci. Comput. 37, A2026–A2045 (2015)

    Article  MathSciNet  Google Scholar 

  10. Frisch, U., Matarrese, S., Mohayaee, R., Sobolevski, A.: A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature 417, 260–262 (2002)

    Article  Google Scholar 

  11. Gould, N., Sainvitu, C., Toint, P.L.: A filter-trust-region method for unconstrained optimization. SIAM J. Optim. 16, 341–357 (2006)

    Article  MathSciNet  Google Scholar 

  12. Hale, N., Townsend, A.: A fast, simple and stable Chebyshev–Legendre transform using an asymptotic formula. SIAM J. Sci. Comput. 36, A148–A167 (2014)

    Article  MathSciNet  Google Scholar 

  13. Hao, W., Lee, S., Lee, Y.J.: Companion-based multi-level finite element method for computing multiple solutions of nonlinear differential equations. arXiv preprint arXiv:2305.04162 (2023)

  14. Hao, Wenrui, Xue, Chuan: Spatial pattern formation in reaction-diffusion models: a computational approach. J. Math. Biol. 80, 521–543 (2020)

    Article  MathSciNet  Google Scholar 

  15. Hao, W.R., Hauenstein, J.D., Hu, B., Sommese, A.J.: A bootstrapping approach for computing multiple solutions of differential equations. J. Comput. Appl. Math. 258, 181–190 (2014)

    Article  MathSciNet  Google Scholar 

  16. Hao, Wenrui, Hesthaven, Jan, Lin, Guang, Zheng, Bin: A homotopy method with adaptive basis selection for computing multiple solutions of differential equations. J. Sci. Comput. 82, 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  17. Hao, W.R., Zhao, X.Y.E., Chen, L.Q., Zhao, Y.X.: Bifurcation analysis reveals solution structures of phase field models. Commun. App. Math. Comput. 6, 64–89 (2024)

    Article  MathSciNet  Google Scholar 

  18. Li, Y.X., Zhou, J.X.: A minimax method for finding multiple critical points and its applications to semilinear pdes. SIAM J. Sci. Comput. 23, 840–865 (2001)

    Article  MathSciNet  Google Scholar 

  19. Li, Z.X., Yang, Z.H., Zhu, H.I.: Bifurcation method for solving multiple positive solutions to Henon equation. Sci. China Ser. 37, 1417–1428 (2007)

    Google Scholar 

  20. Li, L., Wang, L.L., Li, H.Y.: An efficient spectral trust-region deflation method for multiple solutions. J. Sci. Comput. 32, 1–23 (2023)

    MathSciNet  Google Scholar 

  21. McKenna, P.J., Breuer, B., Plum, M.: Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differ. Equ. 195, 243–269 (2003)

    Article  MathSciNet  Google Scholar 

  22. Natarajan, T., Ahmed, N., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100, 90–93 (1974)

    MathSciNet  Google Scholar 

  23. Nocedal, J., Wright, S.J.: Numerical Optimization, vol. 25. Springer Series in Operations Research (1999)

  24. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, Berlin (2011)

    Google Scholar 

  25. Steidl, G., Potts, D., Tasche, M.: Fast algorithms for discrete polynomial transforms. Math. Comput. 67, 1577–1590 (1998)

    Article  MathSciNet  Google Scholar 

  26. Sun, W.Y., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming, vol. 1. Springer, Berlin (2006)

    Google Scholar 

  27. Tadmor, E.: A review of numerical methods for nonlinear partial differential equations. Bull. Am. Math. Soc. 49, 507–554 (2012)

    Article  MathSciNet  Google Scholar 

  28. Trefethen, L.N.: Spectral Methods in MATLAB, vol. 41. Tsinghua University Press, Beijing (2011)

    Google Scholar 

  29. Wang, Y., Hao, W., Lin, G.: Two-level spectral methods for nonlinear elliptic equations with multiple solutions. SIAM J. Sci. Comput. 40, B1180–B1205 (2018)

    Article  MathSciNet  Google Scholar 

  30. Xie, Z.Q. Liu, W., Yuan, Y.J.: A constrained gentlest ascent dynamics and its applications to find excited states of Bose–Einstein condensates. https://arxiv.org/pdf/2209.04684v1

  31. Xie, Z.Q., Chen, C.M., Xu, Y.: An improved search-extension method for computing multiple solutions of semilinear PDEs. IMA J. Numer. Anal. 25, 549–576 (2005)

    Article  MathSciNet  Google Scholar 

  32. Yang, Z.H., Li, Z.X., Zhu, H.L.: Bifurcation method for solving multiple positive solutions to boundary value problem of henon equation on unit disk. Comput. Math. Appl. 62, 3775–3784 (2011)

    Article  MathSciNet  Google Scholar 

  33. Yao, X.D., Zhou, J.X.: A minimax method for finding multiple critical points in banach spaces and its application to quasi-linear elliptic PDEs. SIAM J. Sci. Comput. 26, 1796–1809 (2005)

    Article  MathSciNet  Google Scholar 

  34. Yao, X.D., Zhou, J.X.: Numerical methods for computing nonlinear eigenpairs: Part I. Iso-Homogeneous cases. SIAM J. Sci. Comput. 29, 1355–1374 (2007)

    Article  MathSciNet  Google Scholar 

  35. Yao, X.D., Zhou, J.X.: Numerical methods for computing nonlinear eigenpairs: Part II. Non-Iso-Homogeneous cases. SIAM J. Sci. Comput 30, 937–956 (2008)

    Article  MathSciNet  Google Scholar 

  36. Zhang, J.Y., Du, Q.: Shrinking dimer dynamics and its applications to saddle point search. SIAM J. Numer. Anal. 50, A1899–A1921 (2012)

    Article  MathSciNet  Google Scholar 

  37. Zhang, H., Andrew, R., Scheinberg, K.: A derivative-free algorithm for least-squares minimization. SIAM J. Optim. 20, 3555–3576 (2010)

    Article  MathSciNet  Google Scholar 

  38. Zhang, X.P., Zhang, J.T., Yu, B.: Eigenfunction expansion method for multiple solutions of semilinear elliptic equations with polynomial nonlinearity. SIAM J. Numer. Anal. 51, 2680–2699 (2013)

    Article  MathSciNet  Google Scholar 

  39. Zhang, L., Yin, J.Y., Zhang, P.W.: High-index optimization-based shrinking dimer method for finding high-index saddle points. SIAM J. Sci. Comput. 6, A3576–A3595 (2019)

    MathSciNet  Google Scholar 

  40. Zhou, J.X.: Instability analysis of saddle points by a local minimax method. Math. Comput. 74, 1391–1411 (2004)

    Article  MathSciNet  Google Scholar 

  41. Zhou, X.: The gentlest ascent dynamics. Nonlinearity 24, 1831–1842 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is partially supported by the the National Natural Science Foundations of China (Nos. 11871455, 12131005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We present the detailed process of the trust region method to solve (2.6). For this purpose, we introduce a region around the current best solution, and approximate the objective function by a quadratic form which boils down to solving a sequence of trust-region subproblems:

$$\begin{aligned} \begin{aligned}&\min _{\varvec{s}\in {\mathbb B}_{h_k}} q^{(k)}({\varvec{s}}) := Q({\varvec{{a}}}_{k}) + {\varvec{g}}({\varvec{{a}}}_{k})^{\top }{\varvec{s}} + \frac{1}{2}{\varvec{s}}^{\top }{\varvec{G}}({\varvec{{a}}}_{k}){\varvec{s}}, \quad \quad k \ge 0, \end{aligned} \end{aligned}$$
(5.1)

where the trust region \({\mathbb B}_{h_k}:=\{\varvec{s}\in {\mathbb R}^n\,:\,\Vert \varvec{s}\Vert \le h_k\}\). When \(h_{k}\) is given and \({\varvec{s}}_{k}\) is the minimizer of \(q^{(k)}({\varvec{s}})\) in (5.1), we can update \({\varvec{{a}}}_{k+1} = {\varvec{{a}}}_{k} + {\varvec{s}}_{k}\). Obviously, it is one of the most critical steps to choose a proper \(h_k\) at each iteration. Based on a good agreement between \(q^{(k)}(s_{k})\) and the objective function value \(Q({\varvec{a}}_{k+1})\), we should choose \(h_{k}\) as large as possible. To be specific, we define a ratio

$$\begin{aligned} r_{k} = \frac{Q({\varvec{{a}}}_{k}) - Q({\varvec{{a}}}_{k+1})}{q^{(k)}(\varvec{0}) - q^{(k)}({\varvec{s}}_{k})}. \end{aligned}$$
(5.2)

The ratio \(r_{k}\) is an indicator for expanding and contracting the trust region. If \(r_{k}\) is negative, the current value of \(Q({\varvec{a}}_{k})\) is less than the new objective value \(Q({\varvec{a}}_{k} + {\varvec{s}}_{k})\), consequently the step should be rejected. If \(r_{k}\) is close to 1, it means there is a good agreement between the model \(q^{(k)}\) and the objective function Q over this step, we can expand the trust region for the next iteration. If \(r_{k}\) is close to zero, the trust region should be contracted. Otherwise, we do not alter the trust region at the next iteration. Moreover, the process is also summarized in the following algorithm 1.

figure a

For simplicity, in general we choose \(\epsilon = 10^{-13}, \delta _1 = 0.25, \delta _2 = 0.75, \tau _1 = 0.5,\) and \(\tau _2 = 2\) throughout the paper. Moreover, in the Algorithm 1 (see Line 4), the subproblem (5.1) needs to be solved. Here the so-called dogleg method (see [11, 26]) is used to solve it, and the process is as follows: Let \(s:= {\varvec{a}}_{k} - d_{k}{\varvec{g}}_{k}\), and substituting it into (5.1) yields

$$\begin{aligned} q^{(k)}({\varvec{a}}_{k} - d_{k} {\varvec{g}}_{k}) = Q({\varvec{a}}_{k}) - d_{k}\Vert {\varvec{g}}_{k}\Vert ^{2}_2 + \frac{1}{2}d^2_{k} {\varvec{g}}^{\top }_{k}{\varvec{G}}_{k}{\varvec{g}}_{k}. \end{aligned}$$

Based on the exact line search, the step size \(d_{k}\) becomes

$$\begin{aligned} d_{k} = \frac{\Vert {\varvec{g}}_{k}\Vert ^{2}_2}{{\varvec{g}}^{\top }_{k}{\varvec{G}}_{k}{\varvec{g}}_{k}}. \end{aligned}$$

Consequently the corresponding step along the steepest descent direction is

$$\begin{aligned} {\varvec{s}}^C_{k} = - d_{k}{\varvec{g}}_{k} = -\frac{{\varvec{g}}^{\top }_{k}{\varvec{g}}_{k}}{{\varvec{g}}^{\top }_{k}{\varvec{G}}_{k}{\varvec{g}}_{k}}{\varvec{g}}_{k}. \end{aligned}$$

On the other hand, the Newtonian step is

$$\begin{aligned} {\varvec{s}}^{N}_{k} = -{\varvec{G}}^{-1}_{k}{\varvec{g}}_{k}. \end{aligned}$$

If \(\Vert {\varvec{s}}^{C}_{k}\Vert _{2} = \Vert d_{k}{\varvec{g}}_{k}\Vert _{2} \ge h_{k}\), the solution of (5.1) can be obtained, i.e.,

$$\begin{aligned} {\varvec{s}}_{k} = -\frac{{\varvec{g}}_{k}}{\Vert {\varvec{g}}_{k}\Vert _2}h_{k}, \end{aligned}$$
(5.3)

which leads to \({\varvec{a}}_{k+1} = {\varvec{a}}_{k} + {\varvec{s}}_{k}\). If \(\Vert {\varvec{s}}^{C}_{k}\Vert _2 < h_{k}\) and \(\Vert {\varvec{s}}^{N}_{k}\Vert _2 > h_{k}\), a dogleg path consisting of two line segments is used to approximate \({\varvec{s}}\) in (5.1), i.e.,

$$\begin{aligned} {\varvec{s}}_{k}(\lambda ) = {\varvec{s}}^{C}_{k} + \lambda ({\varvec{s}}^{N}_{k} - {\varvec{s}}^{C}_{k}),\quad 0 \le \lambda \le 1. \end{aligned}$$
(5.4)

Obviously, when \(\lambda = 0\), \({\varvec{s}}_{k}(\lambda )\) reduces to the steepest descent direction. While \(\lambda = 1\), it becomes the Newtonian direction. To exactly obtain \(\lambda \) in (5.4), we will solve the following equation:

$$\begin{aligned} \Vert {\varvec{s}}^{C}_{k} + \lambda ({\varvec{s}}^{N}_{k} - {\varvec{s}}^{C}_{k})\Vert _2 = h_{k}. \end{aligned}$$

As a result, we have

$$\begin{aligned} {\varvec{a}}_{k+1} = {\varvec{a}}_{k} + {\varvec{s}}_{k}(\lambda ) = {\varvec{a}}_{k} + {\varvec{s}}^{C}_{k} + \lambda ({\varvec{s}}^{N}_{k} - {\varvec{s}}^{C}_{k}), \end{aligned}$$

Otherwise, we choose

$$\begin{aligned} {\varvec{s}}_{k} = {\varvec{s}}^{N}_{k} = -{\varvec{G}}^{-1}_{k}{\varvec{g}}_{k}. \end{aligned}$$
(5.5)

In summary, with (5.3), (5.4) and (5.5), the solution \({\varvec{s}}_{k}\) in (5.1) becomes

$$\begin{aligned} {\varvec{s}}_{k}={\left\{ \begin{array}{ll}-\frac{{\varvec{g}}_{k}}{\Vert {\varvec{g}}_{k}\Vert _2} h_{k}, &{} \text {if}\;\; \Vert {\varvec{s}}^{C}_{k}\Vert _{2} \ge h_{k}, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (\text {I}) \\ {\varvec{s}}^{C}_{k} + \lambda ({\varvec{s}}^{N}_{k} - {\varvec{s}}^{C}_{k}), &{} \text {if}\;\; \Vert {\varvec{s}}^{C}_{k} \Vert _{2}< h_{k}\;\; \text {and}\;\; \Vert {\varvec{s}}^{N}_{k}\Vert _{2} > h_{k}, \quad \quad \quad (\text {II}) \\ -{\varvec{G}}^{-1}_{k}{\varvec{g}}_{k}, &{} \text {if}\;\; \Vert {\varvec{s}}^{C}_{k}\Vert _{2} < h_{k}\;\; \text {and}\;\; \Vert {\varvec{s}}^{N}_{k}\Vert _{2} \le h_{k}. \quad \quad \quad (\text {III}) \end{array}\right. } \end{aligned}$$
(5.6)
Fig. 18
figure 18

Exact trajectory and dogleg approximation

Next, we remark the trust region method for solving nonlinear algebraic system (2.5). As mentioned in [26], the trust region enjoys the desirable global convergence with a local superlinear rate of convergence as follows.

Theorem 5.1

Assume that

  1. (i)

    the function \(Q({\varvec{{a}}})\) is bounded below on the level set

    $$\begin{aligned} H := \{{\varvec{{a}}}\in R^{n}\; :\; Q({\varvec{{a}}}) \le Q({\varvec{{a}}}_{0})\}, \quad \forall \, {\varvec{{a}}}_{0}\in \mathbb R^n, \end{aligned}$$
    (5.7)

    and is Lipschitz continuously differentiable in H

  2. (ii)

    the Hessian matrixes \(G({\varvec{{x}}}^{(k)})\) are uniformly bounded in 2-norm, i.e., \(\Vert G({\varvec{{a}}}_{k})\Vert \le \beta \) for any k and some \(\beta >0\).

If \({\varvec{g}}({\varvec{{a}}}_{k}) \ne {\varvec{0}}\), then

$$\begin{aligned} \lim _{k \rightarrow \infty }\inf \Vert {\varvec{g}}({\varvec{{a}}}_{k})\Vert = 0. \end{aligned}$$
(5.8)

Moreover, if \({\varvec{g}}({\varvec{{a}}}^{*}) = {\varvec{0}}\), and \({\varvec{G}}({\varvec{{a}}}^{*})\) is positive definite, then the convergence rate of the trust region method is quadratic.

Remark 5.1

When k is large enough, the trust region method becomes the Newtonian iteration. As a result, it has the same convergence rate as the Newtonian method. \(\square \)

Remark 5.2

In practice, the gradient and Hessian matrices might be appropriately approximated by some numerical means. We refer to Zhang et al. [37] for such derivative-free methods for (2.6) with \(\varvec{f}\) being twice continuously differentiable, but none of their first-order or second-order derivatives being explicitly available. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ye, Y. & Li, H. An Adaptive Orthogonal Basis Method for Computing Multiple Solutions of Differential Equations with Polynomial Nonlinearities. J Sci Comput 100, 11 (2024). https://doi.org/10.1007/s10915-024-02557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02557-7

Keywords

Mathematics Subject Classification

Navigation