Skip to main content
Log in

An Isoparametric Finite Element Method for Time-fractional Parabolic Equation on 2D Curved Domain

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper provides an efficient numerical scheme for approximating the solution of the time-fractional parabolic equation on 2D curved domain. Here, the solution of the problem exhibits a weak singularity at the initial time \(t=0\). The method is based on applying the L1 formula to approximate the Caputo time-fractional derivative and using the isoparametric finite element method to approximate the spatial direction. A fully discrete scheme is then constructed using numerical quadrature. Since \(\Omega _{h}\) differs from \(\Omega \), the error estimates of the boundary terms on the region between \(\Omega _{h}\) and \(\Omega \) and the effect of numerical quadrature are both considered. Afterward, the stability analysis and optimal error estimates for the fully discrete scheme are proved in detail. Finally, some numerical experiments are presented to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New York (1993)

    Google Scholar 

  2. Hilfer, R.: Application of fractional calculus in physics. World Scientific, New Jersey (2001)

    Google Scholar 

  3. Liu, F., Zhuang, P., Liu, Q.: Numerical methods of fractional partial differential equations and applications. Science Press, Beijing (2015)

    Google Scholar 

  4. Momani, S., Odibat, Z.M.: Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics. J. Comput. Appl. Math. 24, 167–78 (2007)

    MathSciNet  Google Scholar 

  5. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differential formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    MathSciNet  Google Scholar 

  6. Sun, Z.Z., Wu, X.: A fully discrete scheme for a diffusion wave system. Appl. Numer. Math. 56, 193–209 (2006)

    MathSciNet  Google Scholar 

  7. Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    MathSciNet  Google Scholar 

  8. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximation for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    MathSciNet  Google Scholar 

  9. Huang, C.B., Stynes, M.: A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition. Appl. Numer. Math. 135, 15–29 (2019)

    MathSciNet  Google Scholar 

  10. Li, M., Shi, D.Y., Pei, L.F.: Convergence and superconvergence analysis of finite element methods for the time fractional diffusion equation. Appl. Numer. Math. 151, 141–160 (2020)

    MathSciNet  Google Scholar 

  11. Huang, C.B., Stynes, M.: Optimal spatial \(H^{1}\)-norm analysis of a finite element method for a time-fractional diffusion equation. J. Comput. Appl. Math. 367, 112435 (2020)

    MathSciNet  Google Scholar 

  12. Zhao, Y.M., Chen, P., Bu, W.P., Liu, X.T., Tang, Y.F.: Two mixed finite element methods for time-fractional diffusion equations. J. Sci. Comput. 70, 407–428 (2017)

    MathSciNet  Google Scholar 

  13. Karra, S., Mustapha, K., Pani, K.: Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J. Numer. Anal. 37, 945–964 (2017)

    MathSciNet  Google Scholar 

  14. Zhang, T., Guo, Q.X.: The finite difference/finite volume method for solving the fractional diffusion equation. J. Comput. Phys. 375, 120–134 (2018)

    MathSciNet  Google Scholar 

  15. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 33(1), 691–698 (2016)

    MathSciNet  Google Scholar 

  16. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  Google Scholar 

  17. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    MathSciNet  Google Scholar 

  18. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)

    MathSciNet  Google Scholar 

  19. Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    MathSciNet  Google Scholar 

  20. Liao, H.L., McLean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. Commun. Comput. Phys. 30(2), 567–601 (2021)

    MathSciNet  Google Scholar 

  21. Jin, B.T., Lazarov, R., Zhou, Z.Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Meth. Appl. Mech. Engin. 346, 332–358 (2019)

    MathSciNet  Google Scholar 

  22. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88(319), 2135–2155 (2019)

    MathSciNet  Google Scholar 

  23. Li, M., Zhao, J.K., Huang, C.M., Chen, S.C.: Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data. J. Sci. Comput. 81, 1823–1859 (2019)

    MathSciNet  Google Scholar 

  24. Zhang, Y.D., Feng, M.F.: The virtual element method for the time fractional convection diffusion reaction equation with non-smooth data. Comput. Math. Appl. 110, 1–18 (2022)

    MathSciNet  Google Scholar 

  25. Toprakseven, S.: A weak Galerkin finite element method for time fractional reaction-diffusion-convection problems with variable coefficients. Appl. Numer. Math. 168, 1–12 (2021)

    MathSciNet  Google Scholar 

  26. Wang, X.P., Gao, F.Z., Liu, Y., Sun, Z.J.: A weak Galerkin finite element method for high dimensional time-fractional diffusion equation. Appl. Math. Comput. 386, 125524 (2020)

    MathSciNet  Google Scholar 

  27. Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)

    MathSciNet  Google Scholar 

  28. Huang, C.B., Stynes, M., An, N.: Optimal \(L^{\infty }(L^{2})\) error analysis of a direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem. BIT Numer. Math. 58(3), 661–690 (2018)

    Google Scholar 

  29. Ammi, M.R.S., Jamiai, I., Torres, D.F.M.: A finite element approximation for a class of Caputo time-fractional diffusion equations. Comput. Math. Appl. 78, 1334–1344 (2019)

    MathSciNet  Google Scholar 

  30. Jin, B.T., Lazarov, R., Liu, Y.K., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    MathSciNet  Google Scholar 

  31. Li, M., Huang, C.M., Ming, W.Y.: Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations. Comp. Appl. Math. 37, 2309–2334 (2018)

    MathSciNet  Google Scholar 

  32. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  33. Ciarlet, P.G., Raviart, P.A.: Interpolation theory over curved elements with applications to finite element methods. Comput. Meth. Appl. Mech. Engin. 1, 217–249 (1972)

    MathSciNet  Google Scholar 

  34. Zlámal, M.: Curved elements in the finite element method. SIAM J. Numer. Anal. 10, 229–240 (1973)

    MathSciNet  Google Scholar 

  35. Ruas, V.: Accuracy enhancement for non-isoparametric finite-element simulations in curved domains application to fluid flow. Comput. Math. Appl. 77, 1756–1769 (2019)

    MathSciNet  Google Scholar 

  36. Mu, L.: Weak Galerkin finite element with curved edges. J. Comput. Appl. Math. 381, 113038 (2021)

    MathSciNet  Google Scholar 

  37. Veiga, L.B.D., Russo, A., Vacca, G.: The virtual element method with curved edges. ESAIM Math. odel. Numer. Anal. 53, 375–404 (2019)

    MathSciNet  Google Scholar 

  38. Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23, 562–580 (1986)

    MathSciNet  Google Scholar 

  39. Song, S.C., Liu, Z.X.: A second-order isoparametric element method to solve plane linear elastic problem. Numer. Meth. Part. Diff. Eq. 37, 1535–1550 (2021)

    MathSciNet  Google Scholar 

  40. Ruas, V., Ramos, M.A.S.: Efficiency of nonparametric finite elements for optimal-order enforcement of Dirichlet conditions on curvilinear boundaries. J. Comput. Appl. Math. 394, 113523 (2021)

    MathSciNet  Google Scholar 

  41. Liu, Y., Chen, W.B., Wang, Y.Q.: A weak Galerkin mixed finite element method for second order elliptic equation on 2D cueved domains. Commun. Comput. Phys. 32(4), 1094–1128 (2022)

    MathSciNet  Google Scholar 

  42. Franco, D., Alessio, F., Ilario, M., Anna, S., Giuseppe, V.: A virtual element method for the wave equation on curved edges in two dimensions. J. Sci. Comput. 90, 50 (2022)

    MathSciNet  Google Scholar 

  43. Nedoma, J.: The finite element solution of parabolic equations. Appl. Math. 23, 408–438 (1978)

    MathSciNet  Google Scholar 

  44. Nedoma, J.: The finite element solution of elliptic and parabolic equations using simplicial isoparametric elements. RAIRO. Anal. Numer. 13, 257–289 (1979)

    MathSciNet  Google Scholar 

  45. Liu, Z.X., Song, S.C.: An isoparametric mixed finite element method for approximating a class of fourth-order elliptic problem. Comput. Math. Appl. 96, 77–94 (2021)

    MathSciNet  Google Scholar 

  46. Bhattacharyya, P.K., Nataraj, N.: Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4-th order eigenvalue problems with variable coefficients. ESAIM Math. Model. Numer. Anal. 36, 1–32 (2002)

    Google Scholar 

  47. Vanmaele, M., Žeńıšek, A.: External finite-element approximations of eigenvalue problems. Math. Model. Num. Anal. 27, 565–589 (1993)

    MathSciNet  Google Scholar 

  48. Liao, H.L., McLean, W., Zhang, J.W.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 12071101, 12171122), Shenzhen Science and Technology Program (No. RCJC20210609103755110), Fundamental Research Project of Shenzhen (No. JCYJ20190806143201649) and Fundamental Research Funds for the Central Universities (No. 2022FRFK060026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Song.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Song, M. & Liang, H. An Isoparametric Finite Element Method for Time-fractional Parabolic Equation on 2D Curved Domain. J Sci Comput 99, 88 (2024). https://doi.org/10.1007/s10915-024-02556-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02556-8

Keywords

Mathematics Subject Classification

Navigation