Skip to main content
Log in

High-Order Bound-Preserving Local Discontinuous Galerkin Methods for Incompressible and Immiscible Two-Phase Flows in Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop high-order bound-preserving (BP) local discontinuous Galerkin methods for incompressible and immiscible two-phase flows in porous media, and employ implicit pressure explicit saturation (IMPES) methods for time discretization, which is locally mass conservative for both phases. Physically, the saturations of the two phases, \(S_w\) and \(S_n\), should belong to the range of [0, 1]. Nonphysical numerical approximations may result in instability of the simulation. Therefore, it is necessary to construct a BP technique to obtain physically relevant numerical approximations. However, the saturation does not satisfy the maximum principle, so most of the existing BP techniques cannot be applied directly. The main idea is to apply the positivity-preserving techniques to both \(S_w\) and \(S_n\), respectively, and enforce \(S_w+S_n = 1\) simultaneously. Numerical examples are given to demonstrate the high-order accuracy of the scheme and effectiveness of the BP technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Arbogast, T., Juntunen, M., Pool, J., Wheeler, M.F.: A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocity and continuous capillary pressure. Comput. Geosci. 17(6), 1055–1078 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bastian, P.: A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 18(5), 779–796 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite elementmethod for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  Google Scholar 

  4. Brand, W., Heinemann, J., Aziz, K.: The grid orientation effect in reservoir simulation. In: Symposium on Reservoir Simulation (1991)

  5. Brooks, R.H., Corey, T.: Hydraulic Properties of Porous Media. In: Hydrology Paper (1964)

  6. Celia, M.A., Binning, P.: A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow. Water Resour. Res. 28(10), 2819–2828 (1992). https://doi.org/10.1029/92WR01488

    Article  Google Scholar 

  7. Chen, Z., Huang, H.Y., Yan, J.: Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes. J. Comput. Phys. 308, 198–217 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chen, H., Kou, J., Sun, S., Zhang, T.: Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media. Comput. Methods Appl. Mech. Eng. 350(15), 641–663 (2019)

    Article  MathSciNet  Google Scholar 

  9. Chen, H., Sun, S.: A new physics-preserving IMPES scheme for incompressible and immiscible two-phase flow in heterogeneous porous media. J. Comput. Appl. Math. 381, 113035 (2020)

    Article  MathSciNet  Google Scholar 

  10. Chuenjarern, N., Xu, Z., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for compressible miscible displacements in porous media on triangular meshes. J. Comput. Phys. 378, 110–128 (2019)

    Article  MathSciNet  Google Scholar 

  11. Class, H., Ebigbo, A., Helmig, R., et al.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009)

    Article  Google Scholar 

  12. Coats, K., Thomas, K., Pierson, R.: Compositional and black oil reservoir simulation. SPE Reserv. Eval. Eng 1(4), 372–379 (1998)

    Article  Google Scholar 

  13. Cockburn, B., Shu, C.: The Runge-Kutta discontinuous Galerkin method for conservative laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  Google Scholar 

  14. Cockburn, B., Shu, C.: The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  15. Dawson, C.N., Klie, H., Wheeler, M.F., Woodward, C.S.: A parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton-krylov solver. Comput. Geosci. 1, 215–249 (1997)

    Article  MathSciNet  Google Scholar 

  16. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(08), 1575–1619 (2014)

    Article  MathSciNet  Google Scholar 

  17. Du, J., Yang, Y.: Maximum-principle-preserving third-order local discontinuous Galerkin methods on overlapping meshes. J. Comput. Phys. 377, 117–141 (2019)

    Article  MathSciNet  Google Scholar 

  18. Epshteyn, Y., Riviere, B.: On the solution of incompressible two-phase flow by a p-version discontinuous Galerkin method. Commun. Numer. Meth. Eng. 22, 741–751 (2006)

    Article  MathSciNet  Google Scholar 

  19. Epshteyn, Y., Riviere, B.: Fully implicit discontinuous finite element methods for two-phase flow. Appl. Numer. Math. 338(57), 383–401 (2007)

    Article  MathSciNet  Google Scholar 

  20. Ern, A., Mozolevski, I., Schuh, L.: Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199(23–24), 1491–1501 (2010)

    Article  MathSciNet  Google Scholar 

  21. Feng, W.J., Guo, H., Kang, Y., Yang, Y.: Bound-preserving discontinuous Galerkin methods with second-order implicit pressure explicit concentration time marching for compressible miscible displacements in porous media. J. Comput. Phys. 463, 111240 (2022)

    Article  MathSciNet  Google Scholar 

  22. Feng, W.J., Guo, H., Tian, L., Yang, Y.: Sign-preserving second-order IMPEC time discretization and its application in compressible miscible displacement with Darcy-Forchheimer models. J. Comput. Phys. 474, 111775 (2023)

    Article  MathSciNet  Google Scholar 

  23. Frank, J., Hundsdorfer, W., Verwer, J.G.: On the stability of implicit-explicit linear multistep methods. Appl. Numer. Math. 25, 193–205 (1997)

    Article  MathSciNet  Google Scholar 

  24. Gottlieb, S., Ketcheson, D., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)

    Article  MathSciNet  Google Scholar 

  25. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  26. Guo, H., Feng, W.J., Xu, Z.Y., Yang, Y.: Conservative numerical methods for the reinterpreted discrete fracture model on non-conforming meshes and their applications in contaminant transportation in fractured porous media. Adv. Water Resour. 153(7), 103951.1-103951.16 (2021)

    Google Scholar 

  27. Guo, H., Yang, Y.: Bound-preserving discontinuous Galerkin method for compressible miscible displacement in porous media. SIAM J. Sci. Comput. 39, A1969–A1990 (2017)

    Article  MathSciNet  Google Scholar 

  28. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface, A Contribution to the Modeling of Hydrosystems, Environmental Engineering. Springer, Berlin (1997)

    Google Scholar 

  29. Hoteit, H., Firoozabadi, A.: Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Adv. Water Resour. 31(1), 56–73 (2008)

    Article  Google Scholar 

  30. Hou, J., Chen, J., Sun, S., Chen, Z.: Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media. J. Comput. Appl. Math. 307, 262–263 (2016)

    Article  MathSciNet  Google Scholar 

  31. Hundsdorfer, W., Ruuth, S.J.: IMEX Extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)

    Article  MathSciNet  Google Scholar 

  32. Jamei, M., Ghafouri, H.: A novel discontinuous Galerkin model for two-phase flow in porous media using an improved IMPES method, Internat. J. Numer. Methods Heat Fluid Flow 26(1), 284–306 (2016)

    Article  MathSciNet  Google Scholar 

  33. Jo, G., Kwak, D.Y.: An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid. Comput. Methods Appl. Mech. Eng. 317, 684–701 (2017)

    Article  MathSciNet  Google Scholar 

  34. Joshaghani, M.S., Riviere, B., Sekachev, M.: Maximum-principle-satisfying discontinuous Galerkin methods for incompressible two-phase immiscible flow. Comput. Methods Appl. Mech. Eng. 391, 114550 (2022)

    Article  MathSciNet  Google Scholar 

  35. Klieber, W., Riviere, B.: Adaptive simulations of two-phase flow by discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 196, 404–419 (2006)

    Article  MathSciNet  Google Scholar 

  36. Koto, T.: Stability of implicit-explicit linear multistep methods for ordinary and delay differential equations. Front. Math. China. 4, 113–129 (2009)

    Article  MathSciNet  Google Scholar 

  37. Kou, J., Sun, S., Wu, Y.: A semi-analytic porosity evolution scheme for simulating wormhole propagation with the Darcy-Brinkman-Forchheimer model. J. Comput. Appl. Math. 348, 401–420 (2019)

    Article  MathSciNet  Google Scholar 

  38. Michel, A.: A finite volume scheme for the simulation of two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 41, 1301–1317 (2003)

    Article  MathSciNet  Google Scholar 

  39. Monteagudo, J.E.P., Firoozabadi, A.: Comparison of fully implicit and IMPES formulations for simulation of water injection in fractured and unfractured media. Int. J. Numer. Methods Eng. 69, 698–728 (2007)

    Article  Google Scholar 

  40. Nacul, E., Aziz, K.: Use of irregular grid in reservoir simulation, Annual technical conference and exhibition (1991)

  41. Oden, J., Babuska, I., Baumann, C.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998)

    Article  MathSciNet  Google Scholar 

  42. Qin, T., Shu, C.W., Yang, Y.: Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics. J. Comput. Phys. 315, 323–347 (2016)

    Article  MathSciNet  Google Scholar 

  43. Reed, W.H., Hill, T.R.: Triangular Mesh Method for the Neutron Transport Equation, Technical Report LA-UR-73-479. Los Alamos Scientific Laboratory, Los Alamos, NM (1973)

    Google Scholar 

  44. Riviere, B., Wheeler, M., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Comput. Geosci. 8, 337–360 (1999)

    Article  MathSciNet  Google Scholar 

  45. Riviere, B.: Numerical study of a discontinuous Galerkin method for incompressible two-phase flow. In: ECCOMAS Proceedings (2004)

  46. Wang, X., Tchelepi, H.A.: Trust-region based solver for nonlinear transport in heterogeneous porous media. J. Comput. Phys. 253, 114–137 (2013)

    Article  MathSciNet  Google Scholar 

  47. Weir, G.J., Kissling, W.M.: The influence of airflow on the vertical infiltration of water into soil. Water Resour. Res. 28(10), 2765–2772 (1992). https://doi.org/10.1029/92WR00803

    Article  Google Scholar 

  48. Wu, Y., Qin, G.: A generalized numerical approach for modeling multiphase flow and transport in fractured porous media. Commun. Comput. Phys. 6, 85–108 (2009)

    Article  MathSciNet  Google Scholar 

  49. Xing, Y., Zhang, X., Shu, C.W.: Positivity preserving high order well balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)

    Article  Google Scholar 

  50. Yang, Y., Wei, D., Shu, C.W.: Discontinuous Galerkin method for Krause’s consensus models and pressureless Euler equations. J. Comput. Phys. 252, 109–127 (2013)

    Article  MathSciNet  Google Scholar 

  51. Yang, Y., Shu, C.W.: Discontinuous Galerkin method for hyperbolic equations involving \(\delta \)-singularities: negative-order norm error estimates and applications. Numer. Math. 124, 753–781 (2013)

    Article  MathSciNet  Google Scholar 

  52. Yang, H., Yang, C., Sun, S.: Active-set reduced-space methods with nonlinear elimination for two-phase flow problems in porous media. SIAM J. Sci. Comput. 38, B593–B618 (2016)

    Article  MathSciNet  Google Scholar 

  53. Yang, H., Sun, S., Yang, C.: Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media. J. Comput. Phys. 332, 1–20 (2017)

    Article  MathSciNet  Google Scholar 

  54. Yang, H., Sun, S., Li, Y., Yang, C.: A scalable fully implicit framework for reservoir simulation on parallel computers. Comput. Methods Appl. Mech. Eng. 330, 334–350 (2018)

    Article  MathSciNet  Google Scholar 

  55. Zhang, X., Shu, C.W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

    Article  MathSciNet  Google Scholar 

  56. Zhang, X., Shu, C.W.: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  Google Scholar 

  57. Zhang, X., Shu, C.W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230, 1238–1248 (2011)

    Article  MathSciNet  Google Scholar 

  58. Zhang, X., Xia, Y., Shu, C.W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50, 29–62 (2012)

    Article  MathSciNet  Google Scholar 

  59. Zhang, Y., Zhang, X., Shu, C.W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–316 (2013)

    Article  MathSciNet  Google Scholar 

  60. Zhao, X., Yang, Y., Seyler, C.: A positivity-preserving semi-implicit discontinuous Galerkin scheme for solving extended magnetohydrodynamics equations. J. Comput. Phys. 278, 400–367 (2014)

    Article  MathSciNet  Google Scholar 

  61. Zidane, A., Firoozabadi, A.: An implicit numerical model for multicomponent compressible two-phase flow in porous media. Adv. Water Resour. 85, 64–78 (2015)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Guo or Yang Yang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hui Guo and Lulu Tian were supported by National Key R &D Program of China (2023YFA1009003), National Nature Science Foundation of China (12131014, 12371416), the Natural Science Foundation of Shandong Province (ZR2021MA001) and the Fundamental Research Funds for the Central Universities (22CX03025A). Yang Yang was supported by the Simons Foundation 961585.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Guo, H., Tian, L. et al. High-Order Bound-Preserving Local Discontinuous Galerkin Methods for Incompressible and Immiscible Two-Phase Flows in Porous Media. J Sci Comput 99, 71 (2024). https://doi.org/10.1007/s10915-024-02532-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02532-2

Keywords

Mathematics Subject Classification

Navigation