Skip to main content
Log in

A Low-Rank Solver for Parameter Estimation and Uncertainty Quantification in Time-Dependent Systems of Partial Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we propose a low-rank solver in view of performing parameter estimation and uncertainty quantification in systems of partial differential equations. The solution approximation is sought in a space-parameter separated form. The discretisation in the parameter direction is made evolve in time through a Markov Chain Monte Carlo method. The resulting method is a Bayesian sequential estimation of the parameters. The computational burden is mitigated by the introduction of an efficient interpolator, based on a reduced basis built by exploiting the low-rank solves. The method is tested on four different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bellman, R., Åström, K.J.: On structural identifiability. Math. Biosci. 7(3–4), 329–339 (1970)

    Article  Google Scholar 

  2. Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)

    Article  MathSciNet  Google Scholar 

  3. Reich, S., Cotter, C.: Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  4. Dashti, M., Stuart, A.M.: The Bayesian approach to inverse problems. In: Handbook of Uncertainty Quantification, pp. 311–428. Springer, Cham (2017)

  5. Hoang, V.H., Schwab, C., Stuart, A.M.: Complexity analysis of accelerated MCMC methods for Bayesian inversion. Inverse Probl. 29(8), 085010 (2013)

    Article  MathSciNet  Google Scholar 

  6. Marzouk, Y.M., Najm, H.N.: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys. 228(6), 1862–1902 (2009)

    Article  MathSciNet  Google Scholar 

  7. Giraldi, L., Le Maître, O.P., Mandli, K.T., Dawson, C.N., Hoteit, I., Knio, O.M.: Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate. Comput. Geosci. 21(4), 683–699 (2017)

    Article  MathSciNet  Google Scholar 

  8. Nagel, J.B., Sudret, B.: Spectral likelihood expansions for Bayesian inference. J. Comput. Phys. 309, 267–294 (2016)

    Article  MathSciNet  Google Scholar 

  9. Schwab, C., Stuart, A.M.: Sparse deterministic approximation of Bayesian inverse problems. Inverse Probl. 28(4), 045003 (2012)

    Article  MathSciNet  Google Scholar 

  10. Shao, Q., Younes, A., Fahs, M., Mara, T.A.: Bayesian sparse polynomial chaos expansion for global sensitivity analysis. Comput. Methods Appl. Mech. Eng. 318, 474–496 (2017)

    Article  MathSciNet  Google Scholar 

  11. Yan, L., Zhou, T.: Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems. J. Comput. Phys. 381, 110–128 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ma, X., Zabaras, N.: An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method. Inverse Probl. 25(3), 035013 (2009)

    Article  MathSciNet  Google Scholar 

  13. Nguyen, N., Rozza, G., Huynh, D.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs: application to real-time Bayesian parameter estimation. In: Large-Scale Inverse Problems and Quantification of Uncertainty, pp. 151–177 (2010)

  14. Boyaval, S.: A fast Monte-Carlo method with a reduced basis of control variates applied to uncertainty propagation and Bayesian estimation. Comput. Methods Appl. Mech. Eng. 241, 190–205 (2012)

    Article  MathSciNet  Google Scholar 

  15. Cui, T., Marzouk, Y.M., Willcox, K.E.: Data-driven model reduction for the Bayesian solution of inverse problems. Int. J. Numer. Methods Eng. 102(5), 966–990 (2015)

    Article  MathSciNet  Google Scholar 

  16. Chen, P., Schwab, C.: Sparse-grid, reduced-basis Bayesian inversion. Comput. Methods Appl. Mech. Eng. 297, 84–115 (2015)

    Article  MathSciNet  Google Scholar 

  17. Chen, P., Ghattas, O.: Stein variational reduced basis Bayesian inversion. SIAM J. Sci. Comput. 43(2), 1163–1193 (2021)

    Article  MathSciNet  Google Scholar 

  18. Huang, D.Z., Huang, J., Reich, S., Stuart, A.M.: Efficient derivative-free Bayesian inference for large-scale inverse problems. arXiv preprint arXiv:2204.04386 (2022)

  19. Cui, T., Dolgov, S., Zahm, O.: Scalable conditional deep inverse Rosenblatt transports using tensor-trains and gradient-based dimension reduction. arXiv (2023)

  20. Del Moral, P.: Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications, vol. 88. Springer, New York (2004)

    Book  Google Scholar 

  21. Särkkä, S.: Bayesian Filtering and Smoothing, vol. 3. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  22. Fox, C., Norton, R.A., Morrison, M.E.K., Molteno, T.C.A.: In: de Gier, J., Praeger, C.E., Tao, T. (eds.) Sequential Bayesian Inference for Dynamical Systems Using the Finite Volume Method, pp. 13–23. Springer, Cham (2019)

  23. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)

    Article  Google Scholar 

  24. Chen, Z.: Bayesian filtering: from Kalman filters to particle filters, and beyond. Statistics 182(1), 1–69 (2003)

    Article  Google Scholar 

  25. Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53(4), 343–367 (2003)

    Article  Google Scholar 

  26. Ernst, O.G., Sprungk, B., Starkloff, H.-J.: Analysis of the ensemble and polynomial chaos Kalman filters in Bayesian inverse problems. SIAM/ASA J. Uncertain. Quantif. 3(1), 823–851 (2015)

    Article  MathSciNet  Google Scholar 

  27. Pagani, S., Manzoni, A., Quarteroni, A.: Efficient state/parameter estimation in nonlinear unsteady PDEs by a reduced basis ensemble Kalman filter. SIAM/ASA J. Uncertain. Quantif. 5(1), 890–921 (2017)

    Article  MathSciNet  Google Scholar 

  28. Silva, F.A., Pagliantini, C., Grepl, M., Veroy, K.: A reduced basis ensemble Kalman method. arXiv preprint arXiv:2210.02279 (2022)

  29. Bachmayr, M., Cohen, A., Dahmen, W.: Parametric PDEs: sparse or low-rank approximations? IMA J. Numer. Anal. 38(4), 1661–1708 (2018)

    Article  MathSciNet  Google Scholar 

  30. Nouy, A.: A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199(23–24), 1603–1626 (2010)

    Article  MathSciNet  Google Scholar 

  31. Chinesta, F., Ladevèze, P.: Separated representations and PGD-based model reduction. Fundam. Appl. Int. Centre Mech. Sci. Courses Lect. 554, 24 (2014)

    MathSciNet  Google Scholar 

  32. Khoromskij, B.N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33(1), 364–385 (2011)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Z., Yang, X., Oseledets, I.V., Karniadakis, G.E., Daniel, L.: Enabling high-dimensional hierarchical uncertainty quantification by ANOVA and tensor-train decomposition. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(1), 63–76 (2014)

    Article  Google Scholar 

  34. Ballani, J., Grasedyck, L.: Hierarchical tensor approximation of output quantities of parameter-dependent PDEs. SIAM/ASA J. Uncertain. Quantif. 3(1), 852–872 (2015)

    Article  MathSciNet  Google Scholar 

  35. Dolgov, S., Scheichl, R.: A hybrid alternating least squares-TT-cross algorithm for parametric PDEs. SIAM/ASA J. Uncertain. Quantif. 7(1), 260–291 (2019)

    Article  MathSciNet  Google Scholar 

  36. Khoromskij, B.N., Oseledets, I.: Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs. Comput. Methods Appl. Math. 10(4), 376–394 (2010)

    Article  MathSciNet  Google Scholar 

  37. Sapsis, T.P., Lermusiaux, P.F.: Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D 238(23–24), 2347–2360 (2009)

    Article  MathSciNet  Google Scholar 

  38. Sapsis, T.P., Lermusiaux, P.F.J.: Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty. Physica D 241(1), 60–76 (2012)

    Article  MathSciNet  Google Scholar 

  39. Musharbash, E., Nobile, F., Zhou, T.: Error analysis of the dynamically orthogonal approximation of time dependent random PDEs. SIAM J. Sci. Comput. 37(2), 776–810 (2015)

    Article  MathSciNet  Google Scholar 

  40. Cheng, M., Hou, T.Y., Zhang, Z.: A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: derivation and algorithms. J. Comput. Phys. 242, 843–868 (2013)

    Article  MathSciNet  Google Scholar 

  41. Choi, M., Sapsis, T.P., Karniadakis, G.E.: On the equivalence of dynamically orthogonal and bi-orthogonal methods: theory and numerical simulations. J. Comput. Phys. 270, 1–20 (2014)

    Article  MathSciNet  Google Scholar 

  42. Koch, O., Lubich, C.: Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29(2), 434–454 (2007)

    Article  MathSciNet  Google Scholar 

  43. Ceruti, G., Kusch, J., Lubich, C.: A rank-adaptive robust integrator for dynamical low-rank approximation. BIT Numer. Math. 62, 1–26 (2022)

    MathSciNet  Google Scholar 

  44. Benner, P., Onwunta, A., Stoll, M.: Low-rank solution of unsteady diffusion equations with stochastic coefficients. SIAM/ASA J. Uncertain. Quantif. 3(1), 622–649 (2015)

    Article  MathSciNet  Google Scholar 

  45. Benner, P., Dolgov, S., Onwunta, A., Stoll, M.: Low-rank solvers for unsteady stokes-brinkman optimal control problem with random data. Comput. Methods Appl. Mech. Eng. 304, 26–54 (2016)

    Article  MathSciNet  Google Scholar 

  46. Stoll, M., Breiten, T.: A low-rank in time approach to PDE-constrained optimization. SIAM J. Sci. Comput. 37(1), 1–29 (2015)

    Article  MathSciNet  Google Scholar 

  47. Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear systems. SIAM J. Matrix Anal. Appl. 32(4), 1288–1316 (2011)

    Article  MathSciNet  Google Scholar 

  48. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  49. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  50. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)

    Article  Google Scholar 

  51. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  52. Dolgov, S.V.: TT-GMRES: solution to a linear system in the structured tensor format. Russ. J. Numer. Anal. Math. Model. 28(2), 149–172 (2013)

    Article  MathSciNet  Google Scholar 

  53. Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. Numer. Linear Algebra Appl. 20(1), 27–43 (2013)

    Article  MathSciNet  Google Scholar 

  54. Weinhandl, R., Benner, P., Richter, T.: Low-rank linear fluid-structure interaction discretizations. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 100(11), e201900205 (2020)

  55. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C.R. Math. 339(9), 667–672 (2004)

    Article  MathSciNet  Google Scholar 

  56. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  Google Scholar 

  57. Sirovich, L.: Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

    Article  MathSciNet  Google Scholar 

  58. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  59. Farhat, C., Chapman, T., Avery, P.: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Methods Eng. 102(5), 1077–1110 (2015)

    Article  MathSciNet  Google Scholar 

  60. Badia, S., Nobile, F., Vergara, C.: Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)

    Article  MathSciNet  Google Scholar 

  61. Fernández, M.A., Mullaert, J., Vidrascu, M.: Generalized Robin-Neumann explicit coupling schemes for incompressible fluid-structure interaction: stability analysis and numerics. Int. J. Numer. Methods Eng. 101(3), 199–229 (2015)

    Article  MathSciNet  Google Scholar 

  62. Burman, E., Fernández, M.A.: Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Eng. 198(5–8), 766–784 (2009)

    Article  MathSciNet  Google Scholar 

  63. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. Notes Numer. Fluid Mech., 10, 11–19. Vieweg (1984)

  64. Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl. 415(1), 20–30 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author acknowledges support by Inria through the PEPR “SantéNumérique”. The third author acknowledges support from ANR Grant ADAPT 18-CE46-0001.

Funding

The first author was financially supported by Inria through the PEPR Santé Numérique program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Fernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

SVD of a Second-Order Tensor

Algorithm 2
figure b

SVD of a second-order tensor

Truncated Preconditioned GMRES Algorithm

Algorithm 3
figure c

Truncated preconditioned GMRES algorithm

In order to limit memory footprint, Algorithm 3 can also be restarted using the final iterate as initial guess if the maximum number of iterations is reached without converging.

Brand’s Algorithm

Algorithm 4
figure d

Brand’s algorithm [64]

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riffaud, S., Fernández, M.A. & Lombardi, D. A Low-Rank Solver for Parameter Estimation and Uncertainty Quantification in Time-Dependent Systems of Partial Differential Equations. J Sci Comput 99, 34 (2024). https://doi.org/10.1007/s10915-024-02488-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02488-3

Keywords

Navigation