Skip to main content
Log in

Convergence and Superconvergence Analysis of a Nonconforming Finite Element Variable-Time-Step BDF2 Implicit Scheme for Linear Reaction-Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, an effective fully-discrete implicit scheme for solving linear reaction-diffusion equations is constructed by using the variable-time-step two-step backward differentiation formula (VSBDF2) in time combining with the nonconforming finite element methods in space. By introducing a modified energy projection operator, a discrete Laplace operator, the discrete orthogonal convolution kernels, we obtain the optimal and sharp error estimates of order \(O(h^2+\tau ^2)\) in \(L^2\)-norm and \(O(h+\tau ^2)\) in \(H^1\)-norm under a mild restriction \(0<r_k< r_{\max }\approx 4.8645\) for the ratio of adjacent time steps \(r_k\). Furthermore, with the help of a modified discrete Grönwall inequality and the combination technique of interpolation and projection operators, we achieved the superclose result between the interpolation function \(I_hu\) and finite element solution \(u_h\) in \(H^1\)-norm of order \(O(h^2+\tau ^2)\), which together with the interpolation postprocessing operator \(\Pi _{2h}\) leads to the global superconvergence result about \(u-\Pi _{2h}u_h\) in \(H^1\)-norm of order \(O(h^2+\tau ^2)\). Finally, numerical tests are provided to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38, 644–662 (1998). https://doi.org/10.1007/BF02510406

    Article  MathSciNet  Google Scholar 

  2. Brenner, S.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65(215), 897–921 (1996). https://doi.org/10.1090/S0025-5718-96-00746-6

    Article  ADS  MathSciNet  Google Scholar 

  3. Carstensen, C., Köhler, K.: Nonconforming FEM for the obstacle problem. IMA J. Numer. Anal. 37(1), 64–93 (2017). https://doi.org/10.1093/imanum/drw005

    Article  MathSciNet  Google Scholar 

  4. Chen, S., Shi, D., Zhao, Y.: Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes. IMA J. Numer. Anal. 24(1), 77–95 (2004). https://doi.org/10.1093/imanum/24.1.77

    Article  MathSciNet  CAS  Google Scholar 

  5. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019). https://doi.org/10.1137/18M1206084

    Article  MathSciNet  Google Scholar 

  6. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  7. Di, Y., Ma, Y., Shen, J., Zhang, J.: A variable time-step IMEX-BDF2 SAV scheme and its sharp error estimate for the Navier–Stokes equations. ESAIM: Math. Model. Numer. Anal. 57, 1143–1170 (2023). https://doi.org/10.1051/m2an/2023007

    Article  MathSciNet  CAS  Google Scholar 

  8. Di, Y., Wei, Y., Zhang, J., Zhao, C.: Sharp error estimate of an implicit BDF2 scheme with variable time steps for the phase field crystal model. J. Sci. Comput. 92(2), 1–21 (2022). https://doi.org/10.1007/s10915-022-01919-3

    Article  MathSciNet  Google Scholar 

  9. Emmrich, E.: Stability and error of the variable two-step BDF for semilinear parabolic problems. J. Appl. Math. Comput. 19, 33–55 (2005). https://doi.org/10.1007/BF02935787

    Article  MathSciNet  Google Scholar 

  10. Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61(1), 196–221 (2014). https://doi.org/10.1007/s10915-014-9821-5

    Article  MathSciNet  Google Scholar 

  11. Hu, J., Man, H., Shi, Z.: Constrained nonconforming rotated \(Q_1\) element for Stokes flow and planar elasticity. Math. Numer. Sin. Chin. Ed. 27(3), 311 (2005). https://doi.org/10.12286/jssx.2005.3.311

    Article  Google Scholar 

  12. Hu, J., Schedensack, M.: Two low-order nonconforming finite element methods for the Stokes flow in three dimensions. IMA J. Numer. Anal. 39(3), 1447–1470 (2019). https://doi.org/10.1093/imanum/dry021

    Article  MathSciNet  Google Scholar 

  13. Li, M., Zhao, J., Wang, N., Chen, S.: Conforming and nonconforming conservative virtual element methods for nonlinear Schrödinger equation: a unified framework. Comput. Methods Appl. Mech. Eng. 380, 113793 (2021). https://doi.org/10.1016/j.cma.2021.113793

    Article  ADS  Google Scholar 

  14. Liao, H., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42(1), 649–679 (2022). https://doi.org/10.1093/imanum/draa075

    Article  MathSciNet  Google Scholar 

  15. Liao, H., Song, X., Tang, T., Zhou, T.: Analysis of the second-order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. Sci. China Math. 64, 887–902 (2021). https://doi.org/10.1007/s11425-020-1817-4

    Article  MathSciNet  Google Scholar 

  16. Liao, H., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen–Cahn equation. SIAM J. Numer. Anal. 58(4), 2294–2314 (2020). https://doi.org/10.1137/19M1289157

    Article  MathSciNet  Google Scholar 

  17. Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25(1), 160–181 (2005). https://doi.org/10.1093/imanum/drh008

    Article  MathSciNet  Google Scholar 

  18. Ma, Y., , Zhang, J., Zhao, C.: The unconditionally optimal \(H^1\)-norm error estimate of a semi-implicit Galerkin FEMs VSBDF2 scheme for solving semilinear parabolic equations. submitted

  19. Nilssen, T., Tai, X., Winther, R.: A robust nonconforming \(H^2\)-element. Math. Comput. 70(234), 489–505 (2001). https://doi.org/10.1090/S0025-5718-00-01230-8

    Article  ADS  Google Scholar 

  20. Qiao, Z., Yao, C., Jia, S.: Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-harmonic Maxwell’s equations. J. Sci. Comput. 46, 1–19 (2011). https://doi.org/10.1007/s10915-010-9406-x

    Article  MathSciNet  Google Scholar 

  21. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8(2), 97–111 (1992). https://doi.org/10.1002/num.1690080202

    Article  MathSciNet  Google Scholar 

  22. Shen, Y., Gong, W., Yan, N.: Convergence of adaptive nonconforming finite element method for stokes optimal control problems. J. Comput. Appl. Math. 412, 114336 (2022). https://doi.org/10.1016/j.cam.2022.114336

    Article  MathSciNet  Google Scholar 

  23. Shi, D., Liu, Q.: Nonconforming quadrilateral finite element method for Ginzburg–Landau equation. Numer. Methods Partial Differ. Equ. 36(2), 329–341 (2020). https://doi.org/10.1002/num.22430

    Article  MathSciNet  Google Scholar 

  24. Shi, D., Mao, S., Chen, S.: An anisotropic nonconforming finite element with some superconvergence results. J. Comput. Math. 23, 261–274 (2005)

    MathSciNet  Google Scholar 

  25. Shi, D., Pei, L.: Low order Crouzeix–Raviart type nonconforming finite element methods for the 3D time-dependent Maxwell’s equations. Appl. Math. Comput. 211(1), 1–9 (2009). https://doi.org/10.1016/j.amc.2009.01.027

    Article  MathSciNet  Google Scholar 

  26. Shi, D., Pei, L.: Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations. Appl. Math. Comput. 219(17), 9447–9460 (2013). https://doi.org/10.1016/j.amc.2013.03.008

    Article  MathSciNet  Google Scholar 

  27. Shi, D., Wang, J., Yan, F.: Unconditional superconvergence analysis for nonlinear parabolic equation with \(EQ^{rot}_1\) nonconforming finite element. J. Sci. Comput. 70(1), 85–111 (2017). https://doi.org/10.1007/s10915-016-0243-4

    Article  MathSciNet  Google Scholar 

  28. Shi, D., Wang, R.: High accuracy analysis of Galerkin finite element method for Klein–Gordon–Zakharov equations. Appl. Math. Comput. 415, 126701 (2022). https://doi.org/10.1016/j.amc.2021.126701

    Article  MathSciNet  Google Scholar 

  29. Shi, D., Xu, C.: \(EQ^{rot}_1\) nonconforming finite element approximation to Signorini problem. Sci. China Math. 56(6), 1301–1311 (2013)

    Article  MathSciNet  Google Scholar 

  30. Shi, D., Xu, C., Chen, J.: Anisotropic nonconforming quadrilateral finite element approximation to second order elliptic problems. J. Sci. Comput. 56(3), 637–653 (2013). https://doi.org/10.1007/s10915-013-9690-3

    Article  MathSciNet  Google Scholar 

  31. Shi, X., Lu, L.: A new approach of superconvergence analysis of nonconforming Wilson finite element for semi-linear parabolic problem. Comput. Math. Appl. 94, 28–37 (2021). https://doi.org/10.1016/j.camwa.2021.04.022

    Article  MathSciNet  Google Scholar 

  32. Shi, Z.: A remark on the optimal order of convergence of Wilson nonconforming element. Math. Numer. Sin. 8(2), 159–163 (1986). https://doi.org/10.12286/jssx.1986.2.159

    Article  Google Scholar 

  33. Shi, Z., Wang, M.: The finite element method. Science (2010)

  34. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2007). https://doi.org/10.1007/3-540-33122-0

    Book  Google Scholar 

  35. Wang, M., Shi, Z., Xu, J.: A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer. Math. 106(2), 335–347 (2007). https://doi.org/10.1007/s00211-007-0063-4

    Article  MathSciNet  Google Scholar 

  36. Wei, Y., Zhang, J., Zhao, C., Zhao, Y.: A unconditional energy dissipative adaptive IMEX BDF2 scheme and its error estimates for Caha–Hilliard equation on generalized SAV approach (submitted) (2024)

  37. Xie, P., Shi, D., Li, H.: A new robust \(C^0\)-type nonconforming triangular element for singular perturbation problems. Appl. Math. Comput. 217(8), 3832–3843 (2010). https://doi.org/10.1016/j.amc.2010.09.042

    Article  MathSciNet  Google Scholar 

  38. Zhang, H., Yang, X.: Superconvergence analysis of nonconforming finite element method for time-fractional nonlinear parabolic equations on anisotropic meshes. Comput. Math. Appl. 77(10), 2707–2724 (2019). https://doi.org/10.1016/j.camwa.2019.01.001

    Article  MathSciNet  Google Scholar 

  39. Zhang, J., Zhao, C.: Sharp error estimate of BDF2 scheme with variable time steps for linear reaction-diffusion equations. J. Math. 41(6), 471–488 (2021)

    Google Scholar 

  40. Zhang, J., Zhao, C.: Sharp error estimate of BDF2 scheme with variable time steps for molecular beam epitaxial models without slop selection. J. Math. 42(5), 377–401 (2022). https://doi.org/10.13140/RG.2.2.24714.59842

    Article  Google Scholar 

  41. Zhang, Y., Shi, D.: Convergence analysis of a new nonconforming mixed finite element for parabolic equation on anisotropic mesh. Math. Numer. Sin. 35(2), 171 (2013). https://doi.org/10.12286/jssx.2013.2.171

    Article  MathSciNet  Google Scholar 

  42. Zhao, C., Liu, N., Ma, Y., Zhang, J.: Unconditionally optimal error estimate of a linearized variable-time-step BDF2 scheme for nonlinear parabolic equations. Commun. Math. Sci. 21(3), 775–794 (2023). https://doi.org/10.48550/arXiv.2201.06008

    Article  MathSciNet  Google Scholar 

  43. Zhao, C., Yang, R., Di, Y., Zhang, J.: Sharp error estimate of variable time-step IMEX BDF2 scheme for parabolic integro-differential equations with nonsmooth initial data arising in finance. J. Comput. Math. (Accept) (2023). https://doi.org/10.48550/arXiv.2201.09322

  44. Zhu, G., Shi, D., Chen, S.: Superconvergence analysis of lower order anisotropic finite element. Appl. Math. Mech. 28(8), 1119–1130 (2007). https://doi.org/10.1007/s10483-007-0814-x

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported in part by the National Natural Science Foundation of China under grants Nos. 12171376, the Fundamental Research Funds for the Central Universities (No. 2042021kf0050) and WHU-2022-SYJS-0002. The numerical simulations in this work have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwei Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, L., Wei, Y., Zhang, C. et al. Convergence and Superconvergence Analysis of a Nonconforming Finite Element Variable-Time-Step BDF2 Implicit Scheme for Linear Reaction-Diffusion Equations. J Sci Comput 98, 67 (2024). https://doi.org/10.1007/s10915-024-02456-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02456-x

Keywords

Mathematics Subject Classification

Navigation