Skip to main content

Advertisement

Log in

Sharp Error Estimate of an Implicit BDF2 Scheme with Variable Time Steps for the Phase Field Crystal Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A fully implicit two-step backward differentiation formula (BDF2) scheme with variable time steps is considered for solving the phase field crystal (PFC) model by combining with pseudo-spectral method in space. We show that the BDF2 scheme inherits a modified energy dissipation law under a mild ratio restriction A1, i.e., \(0<r_k:=\tau _k/\tau _{k-1}< r_{\max }\approx 4.8645\), which justifies the thermodynamic consistency of the PFC model numerically. In addition, the optimal second-order convergence of the proposed scheme is also established under the ratio restriction A1. The proof involves the tools of DOC and DCC kernels, and some generalized properties of the DOC kernels. As far as we know, the ratio restriction A1 required in our results is mildest so far for the variable time-step BDF2 scheme for calculating PFC model. Numerical examples are provided to demonstrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

Enquiries about data availability should be directed to the authors.

References

  1. Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004). https://doi.org/10.1103/PhysRevE.70.051605

    Article  Google Scholar 

  2. Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002). https://doi.org/10.1103/PhysRevLett.88.245701

    Article  Google Scholar 

  3. Gomez, H., Nogueira, X.: An unconditionally energy-stable method for the phase field crystal equation. Comput. Methods Appl. Mech. Engrg. 249–252, 52–61 (2012). https://doi.org/10.1016/j.cma.2012.03.002

    Article  MathSciNet  MATH  Google Scholar 

  4. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977). https://doi.org/10.1103/PhysRevA.15.319

    Article  Google Scholar 

  5. Chen, W., Wang, X., Yang, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation. SIAM J. Numer. Anal. 57, 495–525 (2019). https://doi.org/10.1137/18M1206084

    Article  MathSciNet  MATH  Google Scholar 

  6. Liao, H., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 1-31 (2020). https://doi.org/10.1093/imanum/draa075

  7. Liao, H.-L., Song, X., Tang, T., Zhou, T.: Analysis of the second-order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. Sci China Math 64, 887–902 (2021). https://doi.org/10.1007/s11425-020-1817-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Liao, H., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J. Numer. Anal. 58, 2294–2314 (2020). https://doi.org/10.1137/19M1289157

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57, 1289–1317 (2019). https://doi.org/10.1137/18M1194328

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, J., Zhao, C.: Sharp error estimate of BDF2 scheme with variable time steps for molecular beam expitaxial models without slop selection. (2021). https://doi.org/10.13140/RG.2.2.24714.59842

  11. Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38, 644–662 (1998). https://doi.org/10.1007/BF02510406

    Article  MathSciNet  MATH  Google Scholar 

  12. Emmrich, E.: Stability and error of the variable two-step BDF for semilinear parabolic problems. J. Appl. Math. Comput. 19, 33–55 (2005). https://doi.org/10.1007/BF02935787

    Article  MathSciNet  MATH  Google Scholar 

  13. Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42, 359–377 (1983). https://doi.org/10.1007/BF01389580

    Article  MathSciNet  MATH  Google Scholar 

  14. Liao, H., Zhang, Z.: Analysis of adaptive BDF2 scheme for diffusion equations. Math. Comput. 90, 1207–1226 (2021). https://doi.org/10.1090/mcom/3585

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, J., Zhao, C.: Sharp error estimate of BDF2 scheme with variable time steps for linear reaction-diffusion equations. J. Math. 41, 471–488 (2021). https://doi.org/10.13548/j.sxzz.20211014.001

    Article  Google Scholar 

  16. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer, Berlin Heidelberg, Berlin, Heidelberg (1997)

    Book  Google Scholar 

  17. Grigorieff, R.: Time discretization of semigroups by the variable two-step BDF method. (2021)

  18. Le Roux, M.-N.: Variable stepsize multistep methods for parabolic problems. SIAM J. Numer. Anal. 19, 725–741 (1982). https://doi.org/10.1137/0719051

    Article  MathSciNet  MATH  Google Scholar 

  19. Palencia, C., Garcíaarchilla, B.: Stability of linear multistep methods for sectorial operators in Banach-Spaces. Appl. Numer. Math. 12, 503–520 (1993). https://doi.org/10.1016/0168-9274(93)90067-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, W., Mao, M., Wang, Z.: Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations. Adv. Comput. Math. 47, 8 (2021). https://doi.org/10.1007/s10444-020-09839-2

    Article  MathSciNet  MATH  Google Scholar 

  21. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete fourier collocation spectral method for 3-D viscous burgers’ equation. J. Sci. Comput. 53, 102–128 (2012). https://doi.org/10.1007/s10915-012-9621-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012). https://doi.org/10.1007/s10915-011-9559-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014). https://doi.org/10.1007/s10915-013-9774-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two-dimensional Navier-Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012). https://doi.org/10.1137/110834901

    Article  MathSciNet  MATH  Google Scholar 

  25. Cheng, K., Wang, C., Wise, S.M., Yue, X.: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69, 1083–1114 (2016). https://doi.org/10.1007/s10915-016-0228-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, M., Huang, Q., Wang, C.: a second order accurate scalar auxiliary variable (sav) numerical method for the square phase field crystal equation. J. Sci. Comput. 88, 33 (2021). https://doi.org/10.1007/s10915-021-01487-y

    Article  MathSciNet  MATH  Google Scholar 

  27. Cheng, K., Wang, C., Wise, S.M.: An energy stable BDF2 fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Commun. Comput. Phys. 26, 1335–1364 (2019). https://doi.org/10.4208/cicp.2019.js60.10

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, J., Tang, T., Wang, L.-L.: Spectral mathod: Algorithms, analysis and applications. (2011)

  29. Yang, X., Han, D.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017). https://doi.org/10.1016/j.jcp.2016.10.020

    Article  MathSciNet  MATH  Google Scholar 

  30. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2011). https://doi.org/10.1137/100812781

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009). https://doi.org/10.1016/j.jcp.2009.04.020

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Q., Mei, L., Yang, X., Li, Y.: Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Adv. Comput. Math. 45, 1551–1580 (2019). https://doi.org/10.1007/s10444-019-09678-w

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

JZ is partially supported by NSFC under grant No. 12171376, 2020-JCJQ-ZD-029, Natural Science Foundation of Hubei Province No. 2019CFA007, and the Fundamental Research Funds for the Central Universities 2042021kf0050. The numerical simulations in this work have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwei Zhang.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

The proof of Lemma 4.6

Proof

Before proving Lemma 4.6, we give some definitions of matrices as follows

$$\begin{aligned} B_2:=\left( \begin{array}{cccc} b^{(1)}_0&{}&{}&{}\\ b^{(2)}_1&{}b^{(2)}_0&{}&{}\\ &{}\ddots &{}\ddots &{}\\ &{}&{}b^{(n)}_1&{}b^{(n)}_0 \end{array} \right) _{n\times n}\ \text {and}\quad \Theta _2:=\left( \begin{array}{cccc} \theta ^{(1)}_0&{}&{}&{}\\ \theta ^{(2)}_1&{}\theta ^{(2)}_0&{}&{}\\ \vdots &{}\ddots &{}\ddots &{}\\ \theta ^{(n)}_{n-1}&{}\cdots &{}\theta ^{(n)}_1&{}\theta ^{(n)}_0 \end{array} \right) _{n\times n,} \end{aligned}$$

which are the matrix forms of BDF2 kernels \(b^{(n)}_{n-k}\) and DOC kernels \(\theta _{n-k}^{(n)}\). From the definition (4.3), the matrices \(B_2\) and \(\Theta _2\) satisfy the following relation.

$$\begin{aligned} \Theta _2 = B_2^{-1}. \end{aligned}$$
(A.1)

Define the diagonal matrix \(\Lambda _\tau :=\text {diag}(\sqrt{\tau _1},\cdots ,\sqrt{\tau _n})\) and \(\tilde{B}_2:=\Lambda _\tau B_2\Lambda _\tau \) and the symmetric matrices

$$\begin{aligned} B:=B_2+B_2^T \quad \text {and} \quad \tilde{B}:=\tilde{B}_2+\tilde{B}^T_2 \quad \text {and} \quad \Theta :=\Theta _2+\Theta _2^T. \end{aligned}$$

It follows from Lemmas 3.1 and 4.1 and [10, Lemmas 4.3] that matrices \(B_2\) and \(\theta _2\) and \(\tilde{B}\) are positive definite. Since B is a real symmetric positive definite matrix, from the standard Cholesky decomposition, there exists a non-singular matrix L such that \(B=L^TL\). Hence, for any \(\varvec{v}:=\{v^k\}_{k=1}^n,\varvec{w}:=\{w^k\}_{k=1}^n\), one has

$$\begin{aligned} \sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}w^kv^j&=\varvec{w}^T\Theta _2\varvec{v}=\varvec{w}^T\Theta _2(LB_2^{-1})^{-1}LB_2^{-1}\varvec{v}\nonumber \\&\le \frac{\varepsilon }{2}\varvec{w}^T\Theta _2B_2L^{-1}(L^{-1})^TB_2^T\Theta _2^T\varvec{w}+\frac{1}{2\varepsilon }\varvec{v}^T(B_2^{-1})^TL^TLB_2^{-1}\varvec{v}\nonumber \\&=\frac{\varepsilon }{2}\varvec{w}^T(\Theta _2B_2)(L^TL)^{-1}(\Theta _2B_2)^T\varvec{w}+\frac{1}{2\varepsilon }\varvec{v}^T(B_2^{-1})^TBB_2^{-1}\varvec{v}\nonumber \\&=\frac{\varepsilon }{2}\varvec{w}^TB^{-1}\varvec{w}+\frac{1}{2\varepsilon }\varvec{v}^T\Theta \varvec{v}, \end{aligned}$$
(A.2)

where the Young’s inequality and (A.1) are used. For the first term of the right-hand side of (A.2), one finds

$$\begin{aligned} \varvec{w}^TB^{-1}\varvec{w}&=\varvec{w}^TL^{-1}(L^T)^{-1}\varvec{w}=\Vert (L^T)^{-1}\varvec{w}\Vert ^2_2\nonumber \\&=\Vert (L^T)^{-1}(LB_2^{-1})^{-1}LB_2^{-1}\varvec{w}\Vert ^2_2 \; \le \; \Vert (L^T)^{-1} B_2L^{-1}\Vert _2^2\varvec{w}^T\Theta \varvec{w}, \end{aligned}$$
(A.3)

where \(\Vert \cdot \Vert _2\) denotes the \(l^2\)-norm in the space \(\mathbb {R}^n\). Set \(\tilde{L}:=L\Lambda _\tau \) and it is easy to check \(\tilde{B}=\Lambda _\tau B\Lambda _\tau = \tilde{L}^T\tilde{L}\). Then, we have

$$\begin{aligned} \Vert (L^T)^{-1} B_2L^{-1}\Vert _2^2=\Vert (\tilde{L}^T)^{-1}\tilde{B_2}\tilde{L}^{-1}\Vert _2^2 \le \Vert \tilde{L}^{-1}\Vert ^4_2\Vert \tilde{B}_2\Vert _2^2\le \mathcal {Q}_\delta , \end{aligned}$$
(A.4)

where the constant \(\mathcal {Q}_\delta \) is defined by

$$\begin{aligned} \mathcal {Q}_{\delta }:=\max _{n\ge 1}\Vert \tilde{B_2}\Vert _2^2\Vert \tilde{L}^{-1}\Vert _2^4=\max _{n\ge 1}\frac{\lambda _{\max }(\tilde{B_2}^T\tilde{B_2})}{\lambda _{\min }^2(\tilde{B})}. \end{aligned}$$
(A.5)

Combining (A.4) and (A.3) with (A.2), we finally arrive at

$$\begin{aligned} \sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}v^kw^j\le \epsilon \sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}v^kv^j+ \frac{\mathcal {Q}_{\delta }}{\epsilon }\sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}w^kw^j,\quad \forall \epsilon >0, \end{aligned}$$
(A.6)

where we use the fact that \(\varvec{v}^T\Theta \varvec{v}=2\varvec{v}^T\Theta _2\varvec{v}=\sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}v^kv^j\). The proof is completed.

The proof of Lemma 4.7

Proof

Choosing \(v^k=u^k,w^j=\Delta u^j\), \(\epsilon =\frac{4\mathcal {Q}_\delta ^2}{\eta }\) and \(v^k=\nabla u^k,w^j=\nabla \Delta u^j, \epsilon =\frac{2\mathcal {Q}_{\delta }}{\eta }\) in (A.6), one has

$$\begin{aligned} \sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}(u^k,\Delta u^j)&\le \frac{4\mathcal {Q}_\delta ^2}{\eta } \sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}(u^k,u^j)+ \frac{\eta }{4\mathcal {Q}_{\delta }}\sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}(\Delta u^k,\Delta u^j),\end{aligned}$$
(B.1)
$$\begin{aligned} 2\sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}(\nabla u^k,\nabla \Delta u^j)&\le \frac{4\mathcal {Q}_{\delta }}{\eta }\sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}(\nabla u^k,\nabla u^j)\nonumber \\&\quad +\eta \sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}(\nabla \Delta u^k,\nabla \Delta u^j). \end{aligned}$$
(B.2)

It follows from the summation-by-parts formula (2.5) that

$$(u^k,\Delta u^j)=-(\nabla u^k,\nabla u^j), (\nabla u^k,\nabla \Delta u^j)=-(\Delta u^k,\Delta u^j).$$

Thus, inserting (B.1) into (B.2), we arrive at

$$\begin{aligned} \sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}(\Delta u^k,\Delta u^j)\le \frac{16\mathcal {Q}_{\delta }^3}{\eta ^2} \sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}(u^k, u^j)+ \eta \sum _{k=1}^n\sum _{j=1}^k\theta ^{(k)}_{k-j}(\nabla \Delta u^k,\nabla \Delta u^j). \end{aligned}$$
(B.3)

The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, Y., Wei, Y., Zhang, J. et al. Sharp Error Estimate of an Implicit BDF2 Scheme with Variable Time Steps for the Phase Field Crystal Model. J Sci Comput 92, 65 (2022). https://doi.org/10.1007/s10915-022-01919-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01919-3

Keywords

Mathematics Subject Classification

Navigation