Skip to main content
Log in

Pricing Discretely Monitored Asian Options Under Regime-Switching and Stochastic Volatility Models with Jumps

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper proposes a unified approach for pricing discretely monitored floating and fixed strike Asian options under a broad class of regime-switching and stochastic volatility models with jumps. The randomness in volatility can be either characterized by regime switching among discrete market states, a diffusive stochastic variance process correlated with the underlying asset price, or a random time change applied to a background process. Our approach can be applied to price financial derivatives with exotic averaging type payoffs, which goes beyond most of the existing frameworks in terms of versatility. Our success relies on the adoption of the change-of-measure approach and a dimension reduction technique. Specifically, we construct new backward recursions for Asian options that include floating and fixed strike payoffs under a wide range of regime-switching and stochastic volatility models with jumps. The Fourier-cosine series expansion and Gauss quadrature rule are applied to solve the backward recursions. The exponential convergence rate of our approach is proven theoretically and verified numerically via comprehensive error analysis. Extensive numerical experiments demonstrate that our approach is reliable, accurate, and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analysed during the current study are available from the corresponding author upon request.

Notes

  1. As shown in [36], the computations under the 3/2 model with/without jumps are dominated by the calculations of the modified Bessel functions of the first kind with complex orders at the preparation step, and GPU programming is not beneficial to this step. Accordingly, the decrease in the computational time is not as significant as those under other models.

References

  1. Andreasen, J.: The pricing of discretely sampled Asian and lookback options: a change of numeraire approach. J. Comput. Finance 2(1), 5–30 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bates, D.S.: Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options. Rev. Financ. Stud. 9(1), 69–107 (1996)

    Article  Google Scholar 

  3. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 1st edn. Springer-Verlag, Berlin Heidelberg (1989)

    Book  Google Scholar 

  4. Broadie, M., Glasserman, P.: Estimating security price derivatives using simulation. Manag. Sci. 42(2), 269–285 (1996)

    Article  Google Scholar 

  5. Cai, N., Song, Y., Kou, S.: A general framework for pricing Asian options under Markov processes. Oper. Res. 63(3), 540–554 (2015)

    Article  MathSciNet  Google Scholar 

  6. Carr, P., Wu, L.: Time-changed Lévy processes and option pricing. J. Financ. Econ. 71(1), 113–141 (2004)

    Article  Google Scholar 

  7. Černý, A., Kyriakou, I.: An improved convolution algorithm for discretely sampled Asian options. Quant. Finance 11(3), 381–389 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Feng, L., Lin, X.: Inverse transform method for simulating Lévy processes and discrete Asian options pricing. In: Proceedings of the 2011 Winter Simulation Conference, pp. 444–456 (2011)

  9. Chen, Z., Feng, L., Lin, X.: Simulating Lévy processes from their characteristic functions and financial applications. ACM Trans. Model. Comput. Simul. 22(3), 1–26 (2012)

    Article  Google Scholar 

  10. Corsaro, S., Kyriakou, I., Marazzina, D., Marino, Z.: A general framework for pricing Asian options under stochastic volatility on parallel architectures. Eur. J. Oper. Res. 272(3), 1082–1095 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cui, Z., Nguyen, D.: First hitting time of integral diffusions and applications. Stoch. Model. 33(3), 376–391 (2017)

    Article  MathSciNet  Google Scholar 

  12. Dingeç, K.D., Sak, H., Hörmann, W.: Variance reduction for Asian options under a general model framework. Rev. Finance 19(2), 907–949 (2015)

    Article  Google Scholar 

  13. Drimus, G.G.: Options on realized variance by transform methods: a non-affine stochastic volatility model. Quant. Finance 12(11), 1679–1694 (2012)

    Article  MathSciNet  Google Scholar 

  14. Eberlein, E., Papapantoleon, A.: Equivalence of floating and fixed strike Asian and lookback options. Stoch. Processes Appl. 115(1), 31–40 (2005)

    Article  MathSciNet  Google Scholar 

  15. Fang, F., Oosterlee, C.W.: A novel pricing method for European options based on Fourier-cosine series expansions. SIAM J. Sci. Comput. 31(2), 826–848 (2009)

    Article  MathSciNet  Google Scholar 

  16. Fang, F., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions. Numer. Math. 114(1), 27–62 (2009)

    Article  MathSciNet  Google Scholar 

  17. Fang, F., Oosterlee, C.W.: A Fourier-based valuation method for Bermudan and barrier options under Heston’s model. SIAM J. Financ. Math. 2(1), 439–463 (2011)

    Article  MathSciNet  Google Scholar 

  18. Fusai, G., Kyriakou, I.: General optimized lower and upper bounds for discrete and continuous arithmetic Asian options. Math. Oper. Res. 41(2), 531–559 (2016)

    Article  MathSciNet  Google Scholar 

  19. Geman, H., Yor, M.: Bessel processes, Asian options, and perpetuities. Math. Financ. 3(4), 349–375 (1993)

    Article  Google Scholar 

  20. Henderson, V., Wojakowski, R.: On the equivalence of floating- and fixed-strike Asian options. J. Appl. Probab. 39(2), 391–394 (2002)

    Article  MathSciNet  Google Scholar 

  21. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  MathSciNet  Google Scholar 

  22. Heston, S.L.: A simple new formula for options with stochastic volatility. Working paper of Olin School of Business, Washington University (1997)

  23. Kemna, A.G.Z., Vorst, A.C.F.: A pricing method for options based on average asset values. J. Bank. Finance 14(1), 113–129 (1990)

    Article  Google Scholar 

  24. Kirkby, J.L.: An efficient transform method for Asian option pricing. SIAM J. Financ. Math. 7(1), 845–892 (2016)

    Article  MathSciNet  Google Scholar 

  25. Kirkby, J.L., Nguyen, D.: Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models. Ann. Finance 16(3), 307–351 (2020)

    Article  MathSciNet  Google Scholar 

  26. Leitao, Á., Ortiz-Gracia, L., Wagner, E.I.: SWIFT valuation of discretely monitored arithmetic Asian options. J. Comput. Sci. 28, 120–139 (2018)

    Article  MathSciNet  Google Scholar 

  27. Levendorskiĭ, S.: Pricing arithmetic Asian options under Lévy models by backward induction in the dual space. SIAM J. Financ. Math. 9(1), 1–27 (2018)

    Article  Google Scholar 

  28. Levendorskiĭ, S., Xie, J.: Pricing of discretely sampled Asian options under Lévy processes. Available at SSRN: https://ssrn.com/abstract=2088214 (2012)

  29. Linetsky, V.: Spectral expansions for Asian (average price) options. Oper. Res. 52(6), 856–867 (2004)

    Article  MathSciNet  Google Scholar 

  30. Ruijter, M.J., Oosterlee, C.W.: Two-dimensional Fourier cosine series expansion method for pricing financial options. SIAM J. Sci. Comput. 34(5), B642–B671 (2012)

    Article  MathSciNet  Google Scholar 

  31. Večeř, J.: A new PDE approach for pricing arithmetic average Asian options. J. Comput. Finance 4(4), 105–113 (2001)

    Article  Google Scholar 

  32. Yamazaki, A.: Pricing average options under time-changed Lévy processes. Rev. Deriv. Res. 17(1), 79–111 (2014)

    Article  Google Scholar 

  33. Zeng, P., Kwok, Y.K.: Pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes. Quantit. Finance 16(9), 1375–1391 (2016)

    Article  Google Scholar 

  34. Zhang, B., Oosterlee, C.W.: Efficient pricing of European-style Asian options under exponential Lévy processes based on Fourier cosine expansions. SIAM J. Financ. Math. 4(1), 399–426 (2013)

    Article  Google Scholar 

  35. Zhang, G., Li, L.: Analysis of Markov chain approximation for option pricing and hedging: grid design and convergence behavior. Oper. Res. 67(2), 407–427 (2019)

    MathSciNet  Google Scholar 

  36. Zhang, W., Zeng, P.: A transform-based method for pricing Asian options under general two-dimensional models. Quantit. Finance 23(11), 1677–1697 (2023)

    Article  MathSciNet  Google Scholar 

  37. Zhang, W., Zeng, P., Kwok, Y.K.: Efficient recursion-quadrature algorithms for pricing Asian options and variance derivatives under stochastic volatility and Lévy jumps. Oper. Res. Lett. 51(6), 687–694 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Pingping Zeng acknowledges the support of the National Natural Science Foundation of China (Grant Nos. 12171228 and 11701266). The research of Gongqiu Zhang was supported by the Shenzhen Fundamental Research Program Project (Grant No. JCYJ20190813165407555) and the National Natural Science Foundation of China (Grant Nos. 12171408 and 11801423).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingping Zeng or Gongqiu Zhang.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Proposition 3.1

To prove Proposition 3.1, we need an extension of Lemma 3.1, the details of which are stated as follows:

Lemma A.1

Under regime-switching Lévy models, SV models with Lévy jumps, and time-changed Lévy models considered in Sect. 2, for any \(n\in {\mathbb {N}}\) and \(0\le s_0<\cdots <s_n\), under the probability measure \(\overline{{\mathbb {Q}}}\) specified in Eq. (3.3), the joint distribution of \((Y_{s_1}-Y_{s_0},\ldots ,Y_{s_n}-Y_{s_0})\) given \((Y_{s_0},v_{s_0})\) depends only on \(v_{s_0}\).

Proof

Under \(\overline{{\mathbb {Q}}}\), the joint characteristic function of \((Y_{s_1}-Y_{s_0},\ldots ,Y_{s_n}-Y_{s_0})\) conditional on \((Y_{s_0},v_{s_0})\) satisfies

$$\begin{aligned} \overline{{\mathbb {E}}}\big [e^{\textrm{i}\sum _{k=1}^{n}w_k(Y_{s_k}-Y_{s_0})}\,\big |\,Y_{s_0}, v_{s_0}\big ]&=~e^{-(r-q)(s_n-s_0)}{\mathbb {E}}\big [e^{Y_{s_n}-Y_{s_0}+\textrm{i}\sum _{k=1}^{n}w_k(Y_{s_k}-Y_{s_0})}\,\big |\,Y_{s_0}, v_{s_0}\big ]\nonumber \\&=~e^{-(r-q)(s_n-s_0)}{\mathbb {E}}\big [e^{\textrm{i}\sum _{k=1}^{n}{\overline{w}}_k(Y_{s_{k}}-Y_{s_{0}})}\,\big |\,Y_{s_0}, v_{s_0}\big ], \end{aligned}$$
(A.1)

where \({\overline{w}}_n=w_n-\textrm{i}\) and \({\overline{w}}_k=w_k\) for \(k=1,\ldots ,n-1\) when \(n\ge 2\). Applying Lemma 3.1, we can conclude that under \(\overline{{\mathbb {Q}}}\), the joint characteristic function of \((Y_{s_1}-Y_{s_0},\ldots ,Y_{s_n}-Y_{s_0})\) conditional on \((Y_{s_0},v_{s_0})\) depends only on \(v_{s_0}\). This completes the proof. \(\square \)

According to Eq. (3.4), the value function \({\mathcal {V}}_{flo,c}(R,y,\nu ;t)\) can be deduced as follows:

$$\begin{aligned}&~{\mathcal {V}}_{flo,c}(R,y,\nu ;t)\nonumber \\&\quad = \frac{e^ye^{-q(T-t)}}{N+1}\overline{{\mathbb {E}}}\bigg [\Big ((N+1)K-\frac{1+\sum _{k=l_t}^{N}e^{Y_{t_k}-\ln R}}{e^{Y_{t_N}-\ln R}}\Big )^+\,\Big |\,R_t=R,Y_t=y, v_t=\nu \bigg ]\nonumber \\&\quad = \frac{e^ye^{-q(T-t)}}{N+1}\overline{{\mathbb {E}}}\bigg [\Big ((N+1)K-\frac{1+\sum _{k=l_t}^{N}e^{Y_{t_k}-\ln R}}{e^{Y_{t_N}-\ln R}}\Big )^+\,\Big |\,Y_t=y, v_t=\nu \bigg ]\nonumber \\&\quad = \frac{e^ye^{-q(T-t)}}{N+1}\overline{{\mathbb {E}}}\bigg [\Big ((N+1)K-\frac{1+\sum _{k=l_t}^{N}e^{Y_{t_k}-Y_t+y-\ln R}}{e^{Y_{t_N}-Y_t+y-\ln R}}\Big )^+\,\Big |\,Y_t=y, v_t=\nu \bigg ]\nonumber \\&\quad = \frac{e^ye^{-q(T-t)}}{N+1}\overline{{\mathbb {E}}}\bigg [\Big ((N+1)K-\frac{1+\sum _{k=l_t}^{N}e^{Y_{t_k}-Y_t+y-\ln R}}{e^{Y_{t_N}-Y_t+y-\ln R}}\Big )^+\,\Big |\,Y_t=y-\ln R,v_t=\nu \bigg ]\nonumber \\&\quad =~\frac{e^ye^{-q(T-t)}}{N+1}\overline{{\mathbb {E}}}\bigg [\Big ((N+1)K-\frac{1+\sum _{k=l_t}^{N}e^{Y_{t_k}}}{e^{Y_{t_N}}}\Big )^+\,\Big |\,Y_t=y-\ln R, v_t=\nu \bigg ]\nonumber \\&\quad = \frac{e^{y}e^{-q(T-t)}}{N+1}V(y-\ln R,\nu ;t), \end{aligned}$$
(A.2)

where the second equality follows from the Markovian property of (Yv), and the fourth equality holds owing to Lemma A.1.

Proof of Theorem 3.1

The definition Eq. (3.6) leads to the terminal condition Eq. (3.8). Between two consecutive monitoring dates,

$$\begin{aligned} V_{k}\left( y,\nu \right)&=~\overline{{\mathbb {E}}}\bigg [ \Big ( (N+1)K-\frac{1+\sum _{i=k+1}^{N}e^{Y_{t_i}}}{e^{Y_{t_N}}}\Big ) ^{+}\,\bigg |\, Y_{t_{k}}=y, v_{t_{k}}=\nu \bigg ] \nonumber \\&=~\overline{{\mathbb {E}}}\bigg [ \overline{{\mathbb {E}}}\bigg [\Big ( (N+1)K-\frac{1+\sum _{i=k+1}^{N}e^{Y_{t_i}}}{e^{Y_{t_N}}}\Big ) ^{+}\,\Big |\,{\mathcal {F}}_{t_{k+1}}\bigg ]\,\bigg |\, Y_{t_{k}}=y, v_{t_{k}}=\nu \bigg ]\nonumber \\&=~\overline{{\mathbb {E}}}\bigg [ \overline{{\mathbb {E}}}\bigg [ \Big ((N+1)K-\frac{1+e^{Y_{t_{k+1}}}+\sum _{i=k+2}^{N}e^{Y_{t_i}}}{e^{Y_{t_N}}}\Big ) ^{+}\,\Big |\, Y_{t_{k+1}}, v_{t_{k+1}}\bigg ]\,\bigg |\,Y_{t_{k}}=y, v_{t_{k}}=\nu \bigg ],\nonumber \\ \end{aligned}$$
(B.1)

where the second and last equalities are attributed to the tower property and Markovian property of (Yv), respectively. Consider the following inner expectation:

$$\begin{aligned}&~\overline{{\mathbb {E}}}\bigg [ \Big ((N+1)K-\frac{1+e^{Y_{t_{k+1}}}+\sum _{i=k+2}^{N}e^{Y_{t_i}}}{e^{Y_{t_N}}}\Big ) ^{+}\,\Big |\, Y_{t_{k+1}}=y', v_{t_{k+1}}\bigg ]\nonumber \\&\quad =~\overline{{\mathbb {E}}}\bigg [ \Big ((N+1)K-\frac{1+\sum _{i=k+2}^{N}e^{Y_{t_i}-\ln (1+e^{y'})}}{e^{Y_{t_N}-\ln (1+e^{y'})}}\Big ) ^{+}\,\Big |\, Y_{t_{k+1}}=y', v_{t_{k+1}}\bigg ]\nonumber \\&\quad =~\overline{{\mathbb {E}}}\bigg [ \Big ( (N+1)K-\frac{1+\sum _{i=k+2}^{N}e^{Y_{t_i}-Y_{t_{k+1}}+y'-\ln (1+e^{y'})}}{e^{Y_{t_N}-Y_{t_{k+1}}+y'-\ln (1+e^{y'})}}\Big ) ^{+}\,\Big |\, Y_{t_{k+1}}=y', v_{t_{k+1}}\bigg ]\nonumber \\&\quad =~\overline{{\mathbb {E}}}\bigg [ \Big ((N+1)K-\frac{1+\sum _{i=k+2}^{N}e^{Y_{t_i}}}{e^{Y_{t_N}}}\Big ) ^{+}\,\Big |\, Y_{t_{k+1}}=y'-\ln (1+e^{y'}), v_{t_{k+1}}\bigg ]\nonumber \\&\quad =~V_{k+1}(y'-\ln (1+e^{y'}), v_{t_{k+1}}). \end{aligned}$$
(B.2)

The derivations are analogous to Eq. (A.2). The combination of Eqs. (B.1) and (B.2) yields Eq. (3.7). Finally, Eq. (3.9) follows from Eq. (3.5).

Proof of Eq. (4.4)

It suffices to evaluate the Fourier transform of the density function \({\overline{p}}_{Y,v}(\Delta , y',\nu '\,|\, y,\nu )\) with respect to \(y'\), which can be derived as follows:

$$\begin{aligned} \widehat{{\overline{p}}}_{Y,v}(\Delta , \omega ,\nu '\,|\,y,\nu )&=~\int _{-\infty }^{\infty } e^{\textrm{i}\omega y'} {\overline{p}}_{Y,v}(\Delta , y',\nu '\,|\,y,\nu ) \,\textrm{d}y'\\&=~\int _{-\infty }^{\infty } e^{\textrm{i}\omega y'} e^{-(r-q)\Delta +y'-y}p_{Y,v}(\Delta , y',\nu '\,|\,y,\nu ) \,\textrm{d}y'\\&=~ e^{-(r-q)\Delta -y} \int _{-\infty }^{\infty } e^{(1+\textrm{i}\omega ) y'} p_{Y,v}(\Delta , y',\nu '\,|\,y,\nu )\,\textrm{d}y' \\&=~e^{-(r-q)\Delta }e^{\textrm{i}\omega y}\Psi _{\Delta }(\omega -\textrm{i};\nu ,\nu ') =e^{\textrm{i}\omega y}\overline{\Psi }_{\Delta }(\omega ;\nu ,\nu '). \end{aligned}$$

The second and the fourth equalities are attributed to Eqs. (3.3) and (4.2), respectively.

Derivation of the Greeks

Based on eqs. (3.9) and (4.8), the delta \(\varDelta _{flo,c}\) and gamma \(\varGamma _{flo,c}\) of floating strike Asian call options can be derived as follows:

$$\begin{aligned} \left\{ \begin{aligned} \varDelta _{flo,c}&=\frac{e^{-qT}}{N+1}V_0(0,v_0)\approx \frac{e^{-qT}}{N+1}\Re \bigg \{\sum _{m=0}^{M-1}\!'\beta _{0}^{(m)}(v_{0})e^{-\textrm{i}m\pi \frac{a}{b-a}}\bigg \},\\ \varGamma _{flo,c}&\end{aligned}\right. \end{aligned}$$

Similarly, based on eqs. (3.15) and (4.12), we can approximate the delta \(\varDelta _{fix,p}\) and gamma \(\varGamma _{fix,p}\) of fixed strike Asian put options as follows:

$$\begin{aligned} \left\{ \begin{aligned} \varDelta _{fix,p}&=-\frac{e^{-rT}}{N+1}V_0\left( \ln \frac{S_0}{(N+1)K-S_0},v_0\right) +\frac{e^{-rT}((N+1)K-S_0)}{N+1}\frac{\partial V_0\left( \ln \frac{S_0}{(N+1)K-S_0},v_0\right) }{\partial S_0}\\&\approx -\frac{e^{-rT}}{N+1}\Re \bigg \{\sum _{m=0}^{M-1}\!'\beta _{0}^{(m)}(v_{0})e^{\textrm{i}m\pi \frac{\ln (S_0/((N+1)K-S_0))-a}{b-a}}\bigg \}\\&\quad +e^{-rT}\Re \bigg \{\sum _{m=0}^{M-1}\!'\frac{\textrm{i}m\pi }{b-a}\frac{K}{S_0}\beta _{0}^{(m)}(v_{0})e^{\textrm{i}m\pi \frac{\ln (S_0/((N+1)K-S_0))-a}{b-a}}\bigg \}\\&= e^{-rT}\Re \bigg \{\sum _{m=0}^{M-1}\!'\Big (\frac{K}{S_0}\frac{\textrm{i}m\pi }{b-a}-\frac{1}{N+1}\Big )\beta _{0}^{(m)}(v_{0})e^{\textrm{i}m\pi \frac{\ln (S_0/((N+1)K-S_0))-a}{b-a}}\bigg \},\\ \varGamma _{fix,p}&=-2\frac{e^{-rT}}{N+1}\frac{\partial V_0\left( \ln \frac{S_0}{(N+1)K-S_0},v_0\right) }{\partial S_0}+\frac{e^{-rT}((N+1)K-S_0)}{N+1}\frac{\partial ^2 V_0\left( \ln \frac{S_0}{(N+1)K-S_0},v_0\right) }{\partial S_0^2}\\&\approx -e^{-rT}\Re \bigg \{\sum _{m=0}^{M-1}\!'\frac{\textrm{i}m\pi }{b-a}\frac{2K}{S_0((N+1)K-S_0)}\beta _{0}^{(m)}(v_{0})e^{\textrm{i}m\pi \frac{\ln (S_0/((N+1)K-S_0))-a}{b-a}}\bigg \}\\&\quad -e^{-rT}\Re \bigg \{\sum _{m=0}^{M-1}\!'\frac{\textrm{i}m\pi }{b-a}\frac{K((N+1)K-2S_0)}{S_0^2((N+1)K-S_0)}\beta _{0}^{(m)}(v_{0})e^{\textrm{i}m\pi \frac{\ln (S_0/((N+1)K-S_0))-a}{b-a}}\bigg \}\\&\quad -e^{-rT}\Re \bigg \{\sum _{m=0}^{M-1}\!'\frac{ m^2\pi ^2}{(b-a)^2}\frac{(N+1)K^2}{S_0^2((N+1)K-S_0)}\beta _{0}^{(m)}(v_{0})e^{\textrm{i}m\pi \frac{\ln (S_0/((N+1)K-S_0))-a}{b-a}}\bigg \}\\&\approx -\frac{e^{-rT}(N+1)K^2}{S_0^2((N+1)K-S_0)}\Re \bigg \{\sum _{m=0}^{M-1}\!'\Big (\frac{\textrm{i}m\pi }{b-a}+\frac{m^2\pi ^2}{(b-a)^2}\Big )\beta _{0}^{(m)}(v_{0})e^{\textrm{i}m\pi \frac{\ln (S_0/((N+1)K-S_0))-a}{b-a}}\bigg \}. \end{aligned}\right. \end{aligned}$$

Analysis of Errors \(\mathbb {III}_{k}\) and \(\epsilon ({\widetilde{V}}_0)\)

Denote the inner summation of \(\mathbb {III}_{k}\) by \(\mathbb {III}_{k}^{in}\). Application of the triangle inequality yields

$$\begin{aligned} \begin{aligned} |\mathbb {III}_{k}^{in}|:&=\bigg |\sum _{m=0}^{M-1}\!'\Re \Big \{\overline{\Psi }_\Delta \Big (\frac{m\pi }{b-a};\nu ,\zeta _{j}\Big )e^{\textrm{i}m\pi \frac{y-a}{b-a}}\Big \}\\&\quad \times \int _{a}^{b}[{\widetilde{V}}_{k+1}(y'-\ln (1+e^{y'}),\zeta _{j})-{\check{V}}_{k+1}(y'-\ln (1+e^{y'}),\zeta _{j})]\\ {}&\quad \cos (m\pi \frac{y'-a}{b-a})\,\textrm{d}y'\bigg |\\&\le \sum _{m=0}^{M-1}\!'\Big |\Re \Big \{\overline{\Psi }_\Delta \Big (\frac{m\pi }{b-a};\nu ,\zeta _{j}\Big )e^{\textrm{i}m\pi \frac{y-a}{b-a}}\Big \}\Big |\\&\quad \times \int _{a}^{b}\big |{\widetilde{V}}_{k+1}(y'-\ln (1+e^{y'}),\zeta _{j})-{\check{V}}_{k+1}(y'-\ln (1+e^{y'}),\zeta _{j})\big | \,\textrm{d}y'\\&\le [(b-a)\epsilon ({\widetilde{V}}_{k+1})-U_V\ln (1-e^{a})]\sum _{m=0}^{M-1}\!'\Big |\Re \Big \{\overline{\Psi }_\Delta \Big (\frac{m\pi }{b-a};\nu ,\zeta _{j}\Big )e^{\textrm{i}m\pi \frac{y-a}{b-a}}\Big \}\Big |. \end{aligned} \end{aligned}$$

The last inequality holds because

$$\begin{aligned} \begin{aligned}&~\int _{a}^{b}|{\widetilde{V}}_{k+1}(y'-\ln (1+e^{y'}),\zeta _{j})-{\check{V}}_{k+1}(y'-\ln (1+e^{y'}),\zeta _{j})| \,\textrm{d}y'\\&\quad \le ~\int _{a^*}^{b}|{\widetilde{V}}_{k+1}(y'-\ln (1+e^{y'}),\zeta _{j})-{\check{V}}_{k+1}(y'-\ln (1+e^{y'}),\zeta _{j})| \,\textrm{d}y'\\&\qquad +\int _{a}^{a^*} |{\widetilde{V}}_{k+1}(y'-\ln (1+e^{y'}),\zeta _{j})-{\check{V}}_{k+1}(y'-\ln (1+e^{y'}),\zeta _{j})| \,\textrm{d}y'\\&\quad \le ~(b-a)\epsilon ({\widetilde{V}}_{k+1})+U_V(a^*-a)=(b-a)\epsilon ({\widetilde{V}}_{k+1})-U_V\ln (1-e^a), \end{aligned} \end{aligned}$$

where the last inequality is attributed to the fact that \({\widetilde{V}}_{k+1}\le U_V\), and the last equality follows from \(a^*=a-\ln (1-e^a)\). For brevity, we introduce \(P_m:=\Re \left\{ \overline{\Psi }_\Delta \Big (\frac{m\pi }{b-a};\nu ,\zeta _{j}\Big )e^{\textrm{i}m\pi \frac{y-a}{b-a}}\right\} \) that can be alternatively expressed as \(P_m=\int _{{\mathbb {R}}} {\overline{p}}_{Y,v}(\Delta ,y',\zeta _{j}\,|\,y,\nu )\cos \Big (m\pi \frac{y'-a}{b-a}\Big )\,\textrm{d}y'.\) Under assumption 5.1, by [15, Proposition 4.1], \(P_m\) vanishes exponentially as \(m \rightarrow \infty \). Hence, \(\sum _{m=0}^{M-1}\!'|P_m|\) is bounded, and there exists a constant \(C_1>0\) such that \(\sum _{m=0}^{M-1}\!'|P_m|\le C_1.\) It then follows that

$$\begin{aligned} |\mathbb {III}_{k}^{in}|\le & {} [(b-a)\epsilon ({\widetilde{V}}_{k+1})-U_V\ln (1-e^a)]\sum _{m=0}^{M-1}\!'|P_m|\\ {}\le & {} [(b-a)\epsilon ({\widetilde{V}}_{k+1})-U_V\ln (1-e^a)]C_1. \end{aligned}$$

We calculate the outer summation of \(\mathbb {III}_{k}\):

$$\begin{aligned} |\mathbb {III}_{k}|&= \Big |\sum _{j=1}^{J}\frac{2w_{j}}{b-a}\mathbb {III}_{k}^{in}\Big |\nonumber \\&\le \sum _{j=1}^{J}\frac{2w_{j}}{b-a}[(b-a)\epsilon ({\widetilde{V}}_{k+1})-U_V\ln (1-e^a)]C_1\nonumber \\&\le \frac{2(b_v-a_v)}{b-a}[(b-a)\epsilon ({\widetilde{V}}_{k+1})-U_V\ln (1-e^a)]C_1\nonumber \\ {}&=C_2\epsilon ({\widetilde{V}}_{k+1})-C_{3}\ln (1-e^a), \end{aligned}$$
(E.1)

where \(C_{2}=2(b_v-a_v)C_1\) and \(C_{3}=2(b_v-a_v)U_VC_1/(b-a)\).

Next, we show that

$$\begin{aligned} \epsilon ({\widetilde{V}}_{k})\le \epsilon _{k}(M,J)-{\mathcal {C}}_{k}\ln (1-e^{a}) \end{aligned}$$
(E.2)

for \(k=N-1,\ldots , 0\). Here, \(\epsilon _{k}(M,J)\) is a quantity that converges exponentially with respect to M and J, and \({\mathcal {C}}_{k}>0\) is a constant independent of M and J. An upper bound for \(\epsilon ({\widetilde{V}}_{0})\) follows immediately. In the following, we establish the proof by mathematical induction.

Clearly, Eq. (E.2) with \(k=N-1\) holds because of Eq. (5.5). Suppose that \(\epsilon ({\widetilde{V}}_{k+1})\le \epsilon _{k+1}(M,J)-{\mathcal {C}}_{k+1}\ln (1-e^{a})\). Combining Eqs. (5.6) and (E.1), we obtain the following expression:

$$\begin{aligned} \epsilon ({\widetilde{V}}_{k})&\le \epsilon _{k}^{(loc)}+C_2\epsilon ({\widetilde{V}}_{k+1})-C_{3}\ln (1-e^a)\\&\le \epsilon _{k}^{(loc)}+C_2(\epsilon _{k+1}(M,J)-{\mathcal {C}}_{k+1}\ln (1-e^{a}))-C_{3}\ln (1-e^a)\\&=\epsilon _{k}^{(loc)}+C_2\epsilon _{k+1}(M,J)-(C_2{\mathcal {C}}_{k+1}+C_3)\ln (1-e^{a})=\epsilon _k(M,J)-{\mathcal {C}}_{k}\ln (1-e^a), \end{aligned}$$

where \(\epsilon _k(M,J):=\epsilon _{k}^{(loc)}+C_2\epsilon _{k+1}(M,J)\) converges exponentially with respect to M and J, and \({\mathcal {C}}_{k}:=C_2{\mathcal {C}}_{k+1}+C_3>0\) is a constant independent of M and J. The proof is completed by mathematical induction.

Table 7 Australian and New Zealander option prices

Australian and New Zealander Option Prices

Table 7 presents Australian and New Zealander option prices under three types of models. The Monte Carlo (MC) simulation results with \(8\times 10^6\) sample paths serve as benchmarks. Our approach remains to achieve remarkable accuracy and efficiency.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zeng, P., Zhang, G. et al. Pricing Discretely Monitored Asian Options Under Regime-Switching and Stochastic Volatility Models with Jumps. J Sci Comput 98, 47 (2024). https://doi.org/10.1007/s10915-023-02438-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02438-5

Keywords

Mathematics Subject Classification

Navigation