Skip to main content
Log in

Convergence Analysis for Virtual Element Discretizations of the Cardiac Bidomain Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose here a convergence analysis for virtual element discretizations of the cardiac Bidomain model, a degenerate system of parabolic reaction-diffusion equations that models the propagation of the electric signal in the cardiac tissue. The virtual element method is a recent numerical technology that generalizes finite elements by considering polytopal computational grids, thus allowing more flexibility and accuracy in approximating complex computational domains. This can be an advantage when modeling for instance damaged cardiac tissues or structural heterogeneities. A previous similar study was performed in Anaya et al. (IMA J Numer Anal 40(2):1544–1576, 2020), where the propagation was modeled by means of a scalar nonlocal FitzHugh-Nagumo reaction-diffusion model. In the present work, we extend this analysis to the full semi-discrete Bidomain system, providing extensive numerical tests that validate the theoretical result on several structured and unstructured meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 2
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The numerical experiments have been performed using an in-house matlab code available upon request to the author.

Notes

  1. The degenerate nature of this parabolic system will be reflected in the choice of the appropriate virtual element spaces and in the definition of the correct projection operators.

  2. Remark: this request is trivial, since for modeling reasons the applied current is always bounded.

  3. These are the discrete counterparts of the continuous norms defined in the Introduction, Sect. 1.

References

  1. Adak, D., Mora, D., Natarajan, S., Silgado, A.: A virtual element discretization for the time dependent Navier–Stokes equations in stream-function formulation. ESAIM: M2AN 55(5), 2535–2566 (2021)

    Article  MathSciNet  Google Scholar 

  2. Africa, P.C.: lifex: a flexible, high performance library for the numerical solution of complex finite element problems. SoftwareX 20, 101252 (2022)

    Article  Google Scholar 

  3. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    Article  MathSciNet  Google Scholar 

  4. Anaya, V., Bendahmane, M., Mora, D., Sepúlveda, M.: A virtual element method for a nonlocal FitzHugh–Nagumo model of cardiac electrophysiology. IMA J. Numer. Anal. 40(2), 1544–1576 (2020)

    Article  MathSciNet  Google Scholar 

  5. Antonietti, P.F., Manzini, G., Scacchi, S., Verani, M.: A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations. Math. Mod. Meth. Appl. Sci. 31(14), 2825–2853 (2021)

    Article  MathSciNet  Google Scholar 

  6. Antonietti, P.F., Scacchi, S., Vacca, G., Verani, M.: \(\cal{C} ^1\)-VEM for some variants of the Cahn–Hilliard equation: a numerical exploration. Discrete Contin. Dyn. Syst. Ser. S. 15(8), 1919–1939 (2022)

    Article  MathSciNet  Google Scholar 

  7. Barnafi, N.A., Huynh, N.M.M., Pavarino, L.F., Scacchi, S.: Analysis and numerical validation of robust parallel nonlinear solver for implicit time discretizations in cardiac electrophysiology. arXiv:2209.05193 (2022)

  8. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  9. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  Google Scholar 

  10. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24, 1541–1573 (2014)

    Article  MathSciNet  Google Scholar 

  11. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26, 729–750 (2016)

    Article  MathSciNet  Google Scholar 

  12. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier–Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018)

    Article  MathSciNet  Google Scholar 

  13. Bendahmane, M., Karlsen, K.H.: Convergence of a finite volume scheme for the bidomain model of cardiac tissue. Appl. Numer. Math. 59(9), 2266–2284 (2009)

    Article  MathSciNet  Google Scholar 

  14. Björnsson, B., et al.: Digital twins to personalize medicine. Genome Med. 12(1), 1–4 (2020)

    Article  Google Scholar 

  15. Bourgault, Y., Ethier, M., LeBlanc, V.G.: Simulation of electrophysiological waves with an unstructured finite element method. ESAIM: Math. Model. Num. Anal. 37(4), 649–661 (2003)

    Article  MathSciNet  Google Scholar 

  16. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)

    Google Scholar 

  17. Burger, R., Kumar, S., Mora, D., Ruiz-Baier, R., Verma, N.: Virtual element methods for the three-field formulation of time-dependent linear poroelasticity. Adv. Comput. Math. 47(2), 1 (2021)

    MathSciNet  Google Scholar 

  18. Chen, H., Xiaolin, L., Yan, W.: A splitting preconditioner for a block two-by-two linear system with applications to the bidomain equations. J. Comput. Appl. Math. 321, 487–498 (2017)

    Article  MathSciNet  Google Scholar 

  19. Chen, H., Xiaolin, L., Yan, W.: A two-parameter modified splitting preconditioner for the Bidomain equations. Calcolo 56(2), 1–24 (2019)

    Article  MathSciNet  Google Scholar 

  20. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Mathematical Cardiac Electrophysiology, vol. 13. Springer, Berlin (2014)

    Book  Google Scholar 

  21. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: A numerical study of scalable cardiac electro-mechanical solvers on HPC architectures. Front. Physiol. 9, 268 (2018)

    Article  Google Scholar 

  22. Dassi, F., Lovadina, C., Visinoni, M.: A three-dimensional Hellinger–Reissner virtual element method for linear elasticity problems. Comput. Meth. Appl. Mech. Eng. 364, 112910 (2020)

    Article  MathSciNet  Google Scholar 

  23. De Lazzari, B., et al.: CARDIOSIM\(\copyright \): the first Italian software platform for simulation of the cardiovascular system and mechanical circulatory and ventilatory support. Bioengineering 9(8), 383 (2022)

    Article  Google Scholar 

  24. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the Bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008)

    Article  MathSciNet  Google Scholar 

  25. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. J. Biophys. 1, 445–466 (1961)

    Article  Google Scholar 

  26. Huynh, N.M.M., Chegini, F., Pavarino, L.F., Weiser, M., Scacchi, S.: Convergence analysis of BDDC preconditioners for composite DG discretizations of the cardiac cell-by-cell model. SIAM J. Sci. Comput. 45(6), A2836–A2857 (2023)

  27. Huynh, N.M.M., Pavarino, L.F., Scacchi, S.: Parallel Newton-Krylov BDDC and FETI-DP deluxe solvers for implicit time discretizations of the cardiac Bidomain model. SIAM J. Sci. Comput. 44(2), B224–B249 (2022)

    Article  Google Scholar 

  28. Huynh, N.M.M.: Newton–Krylov-BDDC deluxe solvers for non-symmetric fully implicit time discretizations of the Bidomain model. Numer. Math. 152(4), 841–879 (2022)

    Article  MathSciNet  Google Scholar 

  29. Jaeger, K.H., Hustad, K.G., Cai, X., et al.: Efficient numerical solution of the EMI model representing the extracellular space (E), cell membrane (M) and intracellular space (I) of a collection of cardiac cells. Front. Phys. 8, 1 (2021)

    Article  Google Scholar 

  30. Jaeger, K.H., Edwards, A.G., Giles, W.R., Tveito, A.: From millimeters to micrometers; re-introducing myocytes in models of cardiac electrophysiology. Front. Physiol. 12, 763584 (2021)

    Article  Google Scholar 

  31. Johnston, P.R.: A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia. Comp. Meth. Biomech. Biomed. Eng. 13(2), 157–170 (2010)

    Article  Google Scholar 

  32. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Amer. J. Physiol.-Heart Circ. Physiol. 269(2), H571–H582 (1995)

    Article  Google Scholar 

  33. Munteanu, M., Pavarino, L.F.: Decoupled Schwarz algorithms for implicit discretizations of nonlinear Monodomain and Bidomain systems. Math. Models Methods Appl. Sci. 19(7), 1065–1097 (2009)

    Article  MathSciNet  Google Scholar 

  34. Murillo, M., Cai, X.-C.: A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart. Numer. Linear Algebra Appl. 11, 261–277 (2004)

    Article  MathSciNet  Google Scholar 

  35. Plank, G., et al.: The openCARP simulation environment for cardiac electrophysiology. Comput. Methods Programs Biomed. 208, 106223 (2021)

    Article  Google Scholar 

  36. Rosilho de Souza, G., Krause, R., Pezzuto, S.: Boundary integral formulation of the cell-by-cell model of cardiac electrophysiology. arXiv preprint arXiv:2302.05281 (2023)

  37. Potse, M.: Microscale cardiac electrophysiology on exascale supercomputers. In: SIAM Conference on Parallel Processing for Scientific Computing (PP22), Seattle, WA, USA (2022)

  38. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  Google Scholar 

  39. Topol, E.: Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Hachette, UK (2019)

    Google Scholar 

  40. Topol, E.: High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019)

    Article  Google Scholar 

  41. Tung, L.: A bidomain model for describing ischemic myocardial d-c potentials, PhD thesis, MIT Cambridge, Mass. (1978)

  42. Tveito, A., Mardal, K.-A., Rognes, M.E.: Modeling excitable tissue—The EMI framework. Simula Spring. Briefs Comput. 7, 1 (2021)

    Google Scholar 

  43. Vacca, G., Beirão da Veiga, L.: Virtual Element Methods for Parabolic Problems on Polygonal Meshes, pp. 2110–2134. Wiley Online Library (2015)

  44. Veneroni, M.: Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal. Real World Appl. 10–2, 849–868 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Simone Scacchi for many helpful discussions and feedbacks.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Mai Monica Huynh.

Ethics declarations

Conflict of interest

The author declares that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author has been supported by grants of Istituto Nazionale di Alta Matematica (INDAM-GNCS) and the European High-Performance Computing Joint Undertaking EuroHPC under Grant Agreement No. 955495 (MICROCARD) co-funded by the Horizon 2020 programme of the European Union (EU), and the Italian ministry of economic development.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, N.M.M. Convergence Analysis for Virtual Element Discretizations of the Cardiac Bidomain Model. J Sci Comput 98, 37 (2024). https://doi.org/10.1007/s10915-023-02435-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02435-8

Keywords

Mathematics Subject Classification

Navigation