Skip to main content
Log in

An Aggregation-Based Two-Grid Method for Multilevel Block Toeplitz Linear Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents an aggregation-based two-grid method for solving a multilevel block Toeplitz system. Different from the existing multigrid methods for multilevel block Toeplitz systems, we aggregate a given multilevel block Toeplitz matrix to a new multilevel Toeplitz matrix in such a way that a very sparse coarse grid matrix is constructed in practice. Then, we give an asymptotically tight bound of the convergence rate and provide an algorithm for selecting the optimal prolongation vector and the relaxation factor for our method. Numerical experiments on artificial examples are provided for visualizing the correctness of our analysis, while experiments associated with practical examples show the efficiency of our method in terms of computing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets and code are available on the website (https://github.com/362502anct/AgTGM-for-MBT).

References

  1. An, C., Li, C., Li, X., Su, Y., Yang, F., Zeng, X.: FPDsim: a structural simulator for power grid analysis of flat panel display. In: 60th ACM/IEEE Design Automation Conference (DAC), pp. 1–6 (2023)

  2. Audet, C., Dennis, J.E., Jr.: Analysis of generalized pattern searches. SIAM J. Optim. 13(3), 889–903 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bolten, M., Donatelli, M., Ferrari, P., Furci, I.: A symbol-based analysis for multigrid methods for block-Circulant and block-Toeplitz systems. SIAM J. Matrix Anal. Appl. 43(1), 405–438 (2022)

    Article  MathSciNet  Google Scholar 

  4. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  5. Brandt, A., MacCormick, S., Ruge, J.: Algebraic Multigrid (AMG) for Automatic Multigrid Solution with Application to Geodetic Computations. Report, Institute for Computational Studies, Fort Collins, Colorado (1982)

  6. Chan, R.H., Chang, Q.S., Sun, H.W.: Multigrid method for ill-conditioned symmetric Toeplitz systems. SIAM J. Sci. Comput. 19(2), 516–529 (1998)

    Article  MathSciNet  Google Scholar 

  7. Chan, R.H., Jin, X.Q.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia, PA (2007)

    Book  Google Scholar 

  8. Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427–482 (1996)

    Article  MathSciNet  Google Scholar 

  9. Cheung, S.W., Chung, E., Kim, H.H., Qian, Y.: Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 302, 251–266 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chung, E.T., Ciarlet, P., Jr., Yu, T.F.: Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids. J. Comput. Phys. 235, 14–31 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Donatelli, M., Dorostkar, A., Mazza, M., Neytcheva, M., Serra-Capizzano, S.: Function-based block multigrid strategy for a two-dimensional linear elasticity-type problem. Comput. Math. Appl. 74(5), 1015–1028 (2017)

    Article  MathSciNet  Google Scholar 

  12. Donatelli, M., Ferrari, P., Furci, I., Serra-Capizzano, S., Sesana, D.: Multigrid methods for block-Toeplitz linear systems: convergence analysis and applications. Numer. Linear Algebra Appl. 28(4), e2356 (2021)

    Article  MathSciNet  Google Scholar 

  13. Dumbser, M., Fambri, F., Furci, I., Mazza, M., Serra-Capizzano, S., Tavelli, M.: Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations: spectral analysis and computational results. Numer. Linear Algebra Appl. 25(5), e2151 (2018)

    Article  MathSciNet  Google Scholar 

  14. Ekström, S.E., Furci, I., Serra-Capizzano, S.: Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices. BIT 58(4), 937–968 (2018)

    Article  MathSciNet  Google Scholar 

  15. Falgout, R.D., Vassilevski, P.S., Zikatanov, L.T.: On two-grid convergence estimates. Numer. Linear Algebra Appl. 12(5–6), 471–494 (2005)

    Article  MathSciNet  Google Scholar 

  16. Fambri, F., Dumbser, M.: Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier–Stokes equations on staggered Cartesian grids. Appl. Numer. Math. 110, 41–74 (2016)

    Article  MathSciNet  Google Scholar 

  17. Ferrari, P., Rahla, R.I., Tablino-Possio, C., Belhaj, S., Serra-Capizzano, S.: Multigrid for q k finite element matrices using a (block) Toeplitz symbol approach. Mathematics 8(1), 5 (2019)

    Article  Google Scholar 

  18. Fiorentino, G., Serra, S.: Multigrid methods for Toeplitz matrices. Calcolo 28(3–4), 283–305 (1991)

    Article  MathSciNet  Google Scholar 

  19. Fiorentino, G., Serra, S.: Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions. SIAM J. Sci. Comput. 17(5), 1068–1081 (1996)

    Article  MathSciNet  Google Scholar 

  20. Garoni, C.: Structured matrices coming from PDE approximation theory: spectral analysis, spectral symbol and design of fast iterative solvers. Ph.D. thesis, Università degli Studi dell’Insubria (2015)

  21. Garoni, C., Serra-Capizzano, S., Sesana, D.: Spectral analysis and spectral symbol of d-variate \(\mathbb{Q} _{\varvec {p}}\) Lagrangian FEM stiffness matrices. SIAM J. Matrix Anal. Appl. 36(3), 1100–1128 (2015)

    Article  MathSciNet  Google Scholar 

  22. Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications. University of California Press, Berkeley (1958)

    Book  Google Scholar 

  23. Hu, X., Vassilevski, P.S., Xu, J.: A two-grid SA-AMG convergence bound that improves when increasing the polynomial degree. Numer. Linear Algebra Appl. 23(4), 746–771 (2016)

    Article  MathSciNet  Google Scholar 

  24. Huckle, T., Staudacher, J.: Multigrid methods for block Toeplitz matrices with small size blocks. BIT 46(1), 61–83 (2006)

    Article  MathSciNet  Google Scholar 

  25. Kailath, T., Sayed, A.H.: Fast Reliable Algorithms for Matrices with Structure. SIAM, Philadelphia, PA (1999)

    Book  Google Scholar 

  26. Kim, H., Xu, J., Zikatanov, L.: A multigrid method based on graph matching for convection–diffusion equations. Numer. Linear Algebra Appl. 10(1–2), 181–195 (2003)

    Article  MathSciNet  CAS  Google Scholar 

  27. MathWorks, I.: Global Optimization Toolbox User’s Guide. The Mathworks Inc., Natick (2022)

    Google Scholar 

  28. Notay, Y.: An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37(6), 123–146 (2010)

    MathSciNet  Google Scholar 

  29. Notay, Y.: Algebraic theory of two-grid methods. Numer. Math. Theory Methods Appl. 8(2), 168–198 (2015)

    Article  MathSciNet  Google Scholar 

  30. Oosterlee, C., Washio, T.: On the use of multigrid as a preconditioner. In: Proceedings of Ninth International Conference on Domain Decomposition Methods, pp. 441–448 (1996)

  31. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: Multigrid methods, pp. 73–130. SIAM, Philadelphia, PA (1987)

  32. Serra, S.: Asymptotic results on the spectra of block Toeplitz preconditioned matrices. SIAM J. Matrix Anal. Appl. 20(1), 31–44 (1998)

    Article  MathSciNet  Google Scholar 

  33. Serra, S.: Spectral and computational analysis of block Toeplitz matrices having nonnegative definite matrix-valued generating functions. BIT 39, 152–175 (1999)

    Article  MathSciNet  Google Scholar 

  34. Serra-Capizzano, S.: Matrix algebra preconditioners for multilevel Toeplitz matrices are not superlinear. Linear Algebra Appl. 343, 303–319 (2002)

    Article  MathSciNet  Google Scholar 

  35. Serra-Capizzano, S., Tablino-Possio, C.: Multigrid methods for multilevel circulant matrices. SIAM J. Sci. Comput. 26(1), 55–85 (2004)

    Article  MathSciNet  Google Scholar 

  36. Serra Capizzano, S., Tyrtyshnikov, E.: How to prove that a preconditioner cannot be superlinear. Math. Comput. 72(243), 1305–1316 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  37. Tilli, P.: A note on the spectral distribution of Toeplitz matrices. Linear Multilinear Algebra 45(2–3), 147–159 (1998)

    Article  MathSciNet  Google Scholar 

  38. Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Elsevier, Amsterdam (2000)

    Google Scholar 

  39. Tyrtyshnikov, E.E.: A unifying approach to some old and new theorems on distribution and clustering. Linear Algebra Appl. 232, 1–43 (1996)

    Article  MathSciNet  Google Scholar 

  40. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56(3), 179–196 (1996)

    Article  MathSciNet  Google Scholar 

  41. Xu, J., Zikatanov, L.: Algebraic multigrid methods. Acta Numer. 26, 591–721 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work is supported by the funding National Key R &D Program of China 2020YFA0711902.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangfeng Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the appendix, we discuss the properties of the function \(\textbf{f}_p(\varvec{\theta })\) defined as (44) and \(\alpha ^{*}(\varvec{\theta })\) defined as (21) in Lemma 1.

Lemma 2

Let \(\textbf{f}(\varvec{\theta }):[-\pi , \pi ]^{d} \rightarrow \mathbb {C}^{s \times s}\) be the matrix-valued function which satisfies the AS.1-AS.3 and \(p_s\in \mathbb {R}^s\). The matrix-valued function

$$\begin{aligned} \textbf{f}_p(\varvec{\theta }) = {\left\{ \begin{array}{ll} \textbf{f}(\varvec{\theta }) - \frac{\textbf{f}(\varvec{\theta })p_sp_s^T\textbf{f}(\varvec{\theta })}{p_s^T\textbf{f}(\varvec{\theta })p_s}, &{} \quad \textbf{f}(\varvec{\theta })p_s\ne 0\;\\ \textbf{f}(\varvec{\theta }) , &{}\quad \textbf{f}(\varvec{\theta })p_s = 0\; \end{array}\right. } \end{aligned}$$

is semi-positive definite and continuous for \(\varvec{\theta }\in [-\pi , \pi ]^{d}\). And \(p_s\) is the zero eigenvector of \(\textbf{f}_p(\varvec{\theta })\) for all \(\varvec{\theta } \in [-\pi , \pi ]^{d}\).

Proof

Based on the Cauchy–Schwarz inequality, we can deduce that the function \(\textbf{f}_p(\varvec{\theta })\) is semi-positive definite. Further, we have to discuss the continuity of \(\textbf{f}_p\).

If \(\textbf{f}(\varvec{\theta })p_s\ne 0\) for all \(\varvec{\theta }\in [-\pi , \pi ]^{d}\), we have that

$$\begin{aligned} \textbf{f}_p(\varvec{\theta }) = \textbf{f}(\varvec{\theta }) - \frac{\textbf{f}(\varvec{\theta })p_sp_s^T\textbf{f}(\varvec{\theta })}{p_s^T\textbf{f}(\varvec{\theta })p_s} \end{aligned}$$

is continuous. And If there exists \(\varvec{\theta }_0\) such that \(\textbf{f}(\varvec{\theta }_0)p_s=0\), we have to prove that

$$\begin{aligned} \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0} \frac{\textbf{f}(\varvec{\theta })p_sp_s^T\textbf{f}(\varvec{\theta })}{p_s^T\textbf{f}(\varvec{\theta })p_s} = 0. \end{aligned}$$
(43)

The equation (43) is equal to for all \(v\in \mathbb {C}^s\),

$$\begin{aligned} \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0} \frac{|v^H\textbf{f}(\varvec{\theta })p_s|^2}{p_s^T\textbf{f}(\varvec{\theta })p_s} = 0. \end{aligned}$$
(44)

Using the Cauchy–Schwarz inequality, we obtain that

$$\begin{aligned} \frac{|r(\varvec{\theta })^H\textbf{f}(\varvec{\theta })p_s|^2}{p_s^H\textbf{f}(\varvec{\theta })p_s} \le \Vert r(\varvec{\theta })\Vert ^2\frac{\Vert \textbf{f}(\varvec{\theta })p_s\Vert ^2}{p_s^H\textbf{f}(\varvec{\theta })p_s} = \Vert r(\varvec{\theta })\Vert ^2 \cdot \frac{p_s^H\textbf{f}(\varvec{\theta })^2p_s}{p_s^H\textbf{f}(\varvec{\theta })p_s}. \end{aligned}$$

Thus, if we prove that

$$\begin{aligned} \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0} \frac{p_s^H\textbf{f}(\varvec{\theta })^2p_s}{p_s^H\textbf{f}(\varvec{\theta })p_s} = 0, \end{aligned}$$

the equation (44) holds. Since \(\textbf{f}(\varvec{\theta })\) is Hermitian, its spectral decomposition can be formed as:

$$\begin{aligned} \textbf{f}(\varvec{\theta }) = Q(\varvec{\theta })\Lambda (\varvec{\theta })Q(\varvec{\theta })^H = Q(\varvec{\theta })\begin{bmatrix} \lambda _0(\varvec{\theta }) &{} \\ &{} \Lambda _1(\varvec{\theta }) \end{bmatrix}Q(\varvec{\theta })^H \end{aligned}$$

where \(Q(\varvec{\theta })\) and \(\Lambda (\varvec{\theta })\) represents the eigenvector and eigenvalue matrix, respectively and

$$\begin{aligned} \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0} \lambda _0(\varvec{\theta }) = 0. \end{aligned}$$

Since \(\textbf{f}(\varvec{\theta }_0)p_s = 0\),

$$\begin{aligned} \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0} Q(\varvec{\theta })^Hp_s = [1,0,\ldots ,0]^T. \end{aligned}$$

Thus,

$$\begin{aligned} \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0} \frac{p_s^H\textbf{f}(\varvec{\theta })^2p_s}{p_s^H\textbf{f}(\varvec{\theta })p_s} = \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0} \frac{p_s^HQ(\varvec{\theta })\Lambda ^2(\varvec{\theta })Q(\varvec{\theta })^Hp_s}{p_s^HQ(\varvec{\theta })\Lambda (\varvec{\theta })Q(\varvec{\theta })^Hp_s} = \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0} \frac{ \lambda _0^2(\varvec{\theta })}{ \lambda _0(\varvec{\theta })} = 0. \end{aligned}$$
(45)

Moreover, we have that for all \(\varvec{\theta } \in [-\pi , \pi ]^{d}\)

$$\begin{aligned} \textbf{f}_p(\varvec{\theta })p_s = {\left\{ \begin{array}{ll} \textbf{f}(\varvec{\theta })p_s - \frac{\textbf{f}(\varvec{\theta })p_sp_s^T\textbf{f}(\varvec{\theta })}{p_s^T\textbf{f}(\varvec{\theta })p_s}p_s,&{} \quad \textbf{f}(\varvec{\theta })p_s\ne 0\\ \textbf{f}(\varvec{\theta })p_s ,&{}\quad \textbf{f}(\varvec{\theta })p_s = 0 \end{array}\right. }\quad = 0 \end{aligned}$$

which means \(p_s\) is the zero eigenvector of \(\textbf{f}_p(\varvec{\theta })\). So far, the proof is complete. \(\square \)

Lemma 3

The optimizer \(\alpha ^*(\varvec{\theta })\) in the proof of Lemma 1 has the form:

$$\begin{aligned} \alpha ^*(\varvec{\theta }) = {\left\{ \begin{array}{ll} -\frac{p_s^H\textbf{f}(\varvec{\theta })r(\varvec{\theta })}{p_s^H\textbf{f}(\varvec{\theta })p_s} ,&{} \quad \textbf{f}(\varvec{\theta })p_s\ne 0\;\\ -p_s^Hr(\varvec{\theta }) ,&{}\quad \textbf{f}(\varvec{\theta })p_s = 0\; \end{array}\right. },\quad r(\varvec{\theta })\in \mathcal {S}^{(\textbf{m})} \end{aligned}$$

where \(\textbf{f}(\varvec{\theta }):[-\pi , \pi ]^{d} \rightarrow \mathbb {C}^{s \times s}\) be the matrix-valued function which satisfies the AS.1-AS.3, \(p_s\in \mathbb {R}^s\) and

$$\begin{aligned} \mathcal {S}^{(\textbf{m})} = \left\{ r^{(\textbf{m})}(\varvec{\theta })= \sum _{\textbf{k} = -\mathbf {[\frac{m}{2}]}}^{\mathbf {m-[\frac{m}{2}]-1}}r_{\textbf{k}}e^{\imath \textbf{k}\cdot \varvec{\theta }} \in \mathbb {C}^s\ |\ r^{(\textbf{m})}(\varvec{\theta }) \text { is not identically zero}\,\ r_{\textbf{k}}^HD_sp_s = 0 \right\} , \end{aligned}$$

Then, we have that \(\alpha ^*(\varvec{\theta })\) is continuous and bounded in \([-\pi , \pi ]^{d}\).

Proof

First, we prove \(\alpha ^*(\varvec{\theta })\) is continuous in \([-\pi , \pi ]^{d}\). Since \(\textbf{f}(\varvec{\theta })\) and \(r(\varvec{\theta })\) are continuous, we only need to consider the continuity of \(\alpha ^*(\varvec{\theta })\) at \(\varvec{\theta }_0\) which satisfies \(f(\varvec{\theta }_0)p_s = 0\). Then, we need to prove

$$\begin{aligned} \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0}-\frac{p_s^H\textbf{f}(\varvec{\theta })r(\varvec{\theta })}{p_s^H\textbf{f}(\varvec{\theta })p_s} = -p_s^Hr(\varvec{\theta }_0). \end{aligned}$$

As the analysis in (45), since \(\textbf{f}(\varvec{\theta })\) has the eigenvalue decomposition as

$$\begin{aligned} \textbf{f}(\varvec{\theta }) = Q(\varvec{\theta })\Lambda (\varvec{\theta })Q(\varvec{\theta })^H = Q(\varvec{\theta })\begin{bmatrix} \lambda _0(\varvec{\theta }) &{} \\ &{} \Lambda _1(\varvec{\theta }) \end{bmatrix}Q(\varvec{\theta })^H, \end{aligned}$$

we have

$$\begin{aligned} \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0}-\frac{p_s^H\textbf{f}(\varvec{\theta })r(\varvec{\theta })}{p_s^H\textbf{f}(\varvec{\theta })p_s}&= \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0}-\frac{p_s^HQ(\varvec{\theta })\Lambda (\varvec{\theta })Q(\varvec{\theta })^Hr(\varvec{\theta })}{p_s^HQ(\varvec{\theta })\Lambda (\varvec{\theta })Q(\varvec{\theta })^Hp_s}\\&= \lim _{\varvec{\theta }\rightarrow \varvec{\theta }_0}-\frac{\lambda _0(\varvec{\theta })e_1^T Q(\varvec{\theta })r(\varvec{\theta }) }{\lambda _0(\varvec{\theta })} \\&= -e_1^T Q(\varvec{\theta }_0)r(\varvec{\theta }_0)\\&= -p_s^Hr(\varvec{\theta }_0). \end{aligned}$$

Thus, we have \(\alpha ^*(\varvec{\theta })\) is continuous in \([-\pi , \pi ]^{d}\). Since \([-\pi , \pi ]^{d}\) is a closed interval, \(\alpha ^*(\varvec{\theta })\) is bounded. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, C., Su, Y. An Aggregation-Based Two-Grid Method for Multilevel Block Toeplitz Linear Systems. J Sci Comput 98, 54 (2024). https://doi.org/10.1007/s10915-023-02434-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02434-9

Keywords

Mathematics Subject Classification

Navigation