Skip to main content
Log in

A Novel Boundary Integral Formulation for the Biharmonic Wave Scattering Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with the cavity scattering problem in an infinite thin plate, where the out-of-plane displacement is governed by the two-dimensional biharmonic wave equation. Based on an operator splitting, the scattering problem is recast into a coupled boundary value problem for the Helmholtz and modified Helmholtz equations. A novel boundary integral formulation is proposed for the coupled problem. By introducing an appropriate regularizer, the well-posedness is established for the system of boundary integral equations. Moreover, the convergence analysis is carried out for the semi- and full-discrete schemes of the boundary integral system by using the collocation method. Numerical results show that the proposed method is highly accurate for both smooth and nonsmooth examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available on reasonable request.

References

  1. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)

    Google Scholar 

  2. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)

    Book  Google Scholar 

  3. Dong, H., Lai, J., Li, P.: A highly accurate boundary integral method for the elastic obstacle scattering problem. Math. Comput. 90, 2785–2814 (2021)

    Article  MathSciNet  Google Scholar 

  4. Evans, D.V., Porter, R.: Penetration of flexural waves through a periodically constrained thin elastic plate in vacuo and floating on water. J. Eng. Math. 58, 317–337 (2007)

    Article  MathSciNet  Google Scholar 

  5. Farhat, M., Guenneau, S., Enoch, S.: Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009)

    Article  Google Scholar 

  6. Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic boundary value problems: positivity preserving and nonlinear higher order elliptic equations in bounded domains. In: Lecture Notes in Mathematics, vol. 1991 (2010)

  7. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulation. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  Google Scholar 

  8. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    Article  MathSciNet  Google Scholar 

  9. Haslinger, S.G., Movchan, N.V., Movchan, A.B., McPhedran, R.C.: Transmission, trapping and filtering of waves in periodically constrained elastic plates. Proc. R. Soc. A 468, 76–93 (2012)

    Article  MathSciNet  Google Scholar 

  10. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  11. Kirsch, A., Ritter, S.: The Nyström method for solving a class of singular integral equations and applications in 3D-plate elasticity. Math. Methods Appl. Sci. 22, 177–197 (1999)

    Article  MathSciNet  Google Scholar 

  12. Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58, 145–161 (1990)

    Article  MathSciNet  Google Scholar 

  13. Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. Comput. Appl. Math. 61, 345–360 (1995)

    Article  MathSciNet  Google Scholar 

  14. Kress, R.: A collocation method for a hypersingular boundary integral equation via trigonometric differentiation. J. Integral Equ. Appl. 26, 197–213 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kress, R.: Linear Integral Equations, 3rd edn. Springer, New York (2014)

    Book  Google Scholar 

  16. Kress, R., Sloan, I.H.: On the numerical solution of a logarithmic integral equation of the first kind for the Helmholtz equation. Numer. Math. 66, 199–214 (1993)

    Article  MathSciNet  Google Scholar 

  17. Lai, J., Li, P.: A framework for simulation of multiple elastic scattering in two dimensions. SIAM J. Sci. Comput. 41, A3276–A3299 (2019)

    Article  MathSciNet  Google Scholar 

  18. McPhedran, R.C., Movchan, A.B., Movchan, N.V.: Platonic crystals: Bloch bands, neutrality and defects. Mech. Mater. 41, 356–363 (2009)

    Article  Google Scholar 

  19. Mikhlin, S.G., Prössdorf, S.: Singular Integral Operators. Springer, Berlin (1986)

    Book  Google Scholar 

  20. Pelat, A., Gautier, F., Conlon, S.C., Semperlotti, F.: The acoustic black hole: a review of theory and applications. J. Sound Vib. 476, 115316 (2020)

    Article  Google Scholar 

  21. Saranen, J., Vainikko, G.: Trigonometric collocation methods with product integration for boundary integral equations on closed curves. SIAM J. Numer. Anal. 33, 1577–1596 (1996)

    Article  MathSciNet  Google Scholar 

  22. Smith, M.J.A.: Wave Propagation through Periodic Structures in Thin Plates (Ph.D. thesis). The University of Auckland (2013)

  23. Smith, M.J.A., Meylan, M.H., Mcphedran, R.C.: Scattering by cavities of arbitrary shape in an infinite plate and associated vibration problems. J. Sound Vib. 330, 4029–4046 (2011)

    Article  Google Scholar 

  24. Stenger, N., Wilhelm, M., Wegener, M.: Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012)

    Article  Google Scholar 

  25. Watanabe, E., Utsunomiya, T., Wang, C.: Hydroelastic analysis of pontoon-type VLFS: a literature survey. Eng. Struct. 26, 245–256 (2004)

    Article  Google Scholar 

  26. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Heping Dong is supported in part by the NSFC Grant 12171201. Peijun Li is supported partially by the NSF Grant DMS-2208256.

Appendices

A Representations and splittings of the kernels

The integral kernels of the operators LSKRH are given by

$$\begin{aligned} l(t,\zeta )&=\frac{\textrm{i}\kappa }{2}n(\zeta )\cdot [\gamma (t)-\gamma (\zeta )] \frac{H_1^{(1)}(\kappa |\gamma (t)-\gamma (\zeta )|)}{|\gamma (t)-\gamma (\zeta )|},\\ s(t,\zeta )&=\frac{\textrm{i}}{2}H_0^{(1)}(\textrm{i}\kappa |\gamma (t)-\gamma (\zeta )|),\\ k(t,\zeta )&=\frac{\kappa }{2}n(t)\cdot [\gamma (t)-\gamma (\zeta )] \frac{H_1^{(1)}(\textrm{i}\kappa |\gamma (t)-\gamma (\zeta )|)}{|\gamma (t)-\gamma (\zeta )|},\\ r(t,\zeta )&=\frac{\textrm{i}\kappa ^2}{2}H_0^{(1)}(\kappa |\gamma (t)-\gamma (\zeta )|)n(t)\cdot n(\zeta ),\\ h(t,\zeta )&=\frac{\textrm{i}}{2}\tilde{h}(t,\zeta )\Big \{\kappa ^2H_0^{(1)}(\kappa |\gamma (t)-\gamma (\zeta )|)- \frac{2\kappa H_1^{(1)}(\kappa |\gamma (t)-\gamma (\zeta )|)}{|\gamma (t)-\gamma (\zeta )|}\Big \}\\&\qquad +\frac{\textrm{i}\kappa \gamma '(t)\cdot \gamma '(\zeta )}{2|\gamma (t)-\gamma (\zeta )|}H_1^{(1)}(\kappa |\gamma (t)-\gamma (\zeta )|) +\frac{1}{4\pi }\frac{1}{\sin ^2\frac{1}{2}(t-\zeta )}. \end{aligned}$$

Here \(n(t):=\big (\gamma '_2(t), -\gamma '_1(t)\big )^\top \), \(n^\perp (t):=\gamma '(t)=\big (\gamma '_1(t), \gamma '_2(t)\big )^\top \), and

$$\begin{aligned} \tilde{h}(t,\zeta )=\frac{\big [\gamma '(t)\cdot (\gamma (t)-\gamma (\zeta ))\big ]\big [\gamma '(\zeta )\cdot (\gamma (t) -\gamma (\zeta ))\big ]}{|\gamma (t)-\gamma (\zeta )|^2}. \end{aligned}$$

For the splitting (17), we have

$$\begin{aligned} l_1(t,\zeta )&= \frac{\kappa }{2\pi }n(\zeta )\cdot \big [ \gamma (\zeta )-\gamma (t)\big ]\frac{J_1(\kappa |\gamma (t)-\gamma (\zeta )|)}{ |\gamma (t)-\gamma (\zeta )|}, \\ s_1(t,\zeta )&= -\frac{1}{2\pi }J_0(\textrm{i}\kappa |\gamma (t)-\gamma (\zeta )|), \\ k_1(t,\zeta )&= \frac{\textrm{i}\kappa }{2\pi }n(t)\cdot \big [ \gamma (t)-\gamma (\zeta )\big ]\frac{J_1(\textrm{i}\kappa |\gamma (t)-\gamma (\zeta )|)}{ |\gamma (t)-\gamma (\zeta )|}, \\ r_1(t,\zeta )&= -\frac{\kappa ^2}{2\pi }J_0(\kappa |\gamma (t)-\gamma (\zeta )|)n(t)\cdot n(\zeta ), \\ h_1(t,\zeta )&=-\frac{1}{2\pi }\tilde{h}(t,\zeta )\Bigg (\kappa ^2J_0(\kappa |\gamma (t)-\gamma (\zeta )|)-\frac{2\kappa J_1(\kappa |\gamma (t)-\gamma (\zeta )|)}{ |\gamma (t)-\gamma (\zeta )|}\Bigg )\\&\qquad -\frac{\kappa \gamma '(t)\cdot \gamma '(\zeta )}{2\pi |\gamma (t)-\gamma (\zeta )|}J_1(\kappa |\gamma (t)-\gamma (\zeta )|), \end{aligned}$$

where \(J_0\) and \(J_1\) are the Bessel functions of the first kind with order zero and one, respectively. The diagonal entries are given by

$$\begin{aligned} l_1(t,t)&=0, \quad l_2(t,t)= \frac{1}{2\pi }\frac{{n}(t)\cdot \gamma ''(t)}{|\gamma '(t)|^2},\\ s_1(t,t)&=-\frac{1}{2\pi }, \quad s_2(t,t)= \frac{\textrm{i}}{2}-\frac{C}{\pi }-\frac{1}{\pi }\ln \big (\frac{\textrm{i}\kappa }{2}|\gamma '(t)|\big ),\\ r_1(t,t)&=-\frac{\kappa ^2}{2\pi }|\gamma '(t)|^2, \quad r_2(t,t)=\kappa ^2|\gamma '(t)|^2 \Big \{\frac{\textrm{i}}{2}-\frac{C}{\pi }-\frac{1}{\pi }\ln \big (\frac{\kappa }{2}|\gamma '(t)|\big )\Big \},\\ k_1(t,t)&=0, \quad k_2(t,t)= \frac{1}{2\pi }\frac{{n}(t)\cdot \gamma ''(t)}{|\gamma '(t)|^2},\quad h_1(t,t)=-\frac{\kappa ^2|\gamma '(t)|^2}{4\pi }, \\ h_2(t,t)&=\Big (\pi \textrm{i}-1-2C-2\ln \frac{\kappa |\gamma '(t)|}{2}\Big ) \frac{\kappa ^2|\gamma '(t)|^2}{4\pi }+\frac{1}{12\pi }\\&\qquad +\frac{[\gamma '(t)\cdot \gamma ''(t)]^2}{2\pi |\gamma '(t)|^4}-\frac{|\gamma ''(t)|^2}{4\pi |\gamma '(t)|^2}-\frac{\gamma '(t)\cdot \gamma '''(t)}{6\pi |\gamma '(t)|^2}, \end{aligned}$$

where C denotes Euler’s constant. We refer to [2, 13] for the details of the decomposition.

B Proofs for Theorems 6 and 7

1.1 B.1 Proof of Theorem 6

The function \({\mathcal {D}}\psi \) can be split into the following two parts:

$$\begin{aligned} ({\mathcal {D}}\psi )(t)=\int _0^{2\pi }\ln \Big (4\sin ^2\frac{t-\zeta }{2} \Big )\alpha (t,\zeta )\psi (\zeta )\,\textrm{d}\zeta +\int _0^{2\pi }\beta (t, \zeta )\psi (\zeta )\,\textrm{d}\zeta , \end{aligned}$$

where

$$\begin{aligned} \alpha (t,\zeta )=\left[ \begin{array}{cc} \alpha _1(t,\zeta )&{} \alpha _2(t,\zeta )\\ \alpha _3(t,\zeta )&{} \alpha _4(t,\zeta ) \end{array} \right] , \quad \beta (t,\zeta )=\left[ \begin{array}{cc} \beta _1(t,\zeta )&{} \beta _2(t,\zeta )\\ \beta _3(t,\zeta )&{} \beta _4(t,\zeta ) \end{array} \right] \end{aligned}$$

with \(\alpha _j(t,t)=\partial _t \alpha _j(t,t)=\partial ^2_{tt} \alpha _j(t,t)=0, j=1,2,3,4\) and \(\alpha _j, \beta _j\) being analytic. We write the derivative \(\frac{{\textrm{d}}^{2}}{{\textrm{d}}t^{2}}({\mathcal {D}}\psi )\) in form of

$$\begin{aligned}&({\mathcal {D}}''\psi )(t)P{:}{=}\frac{{\text {d}}^{2}}{{\text {d}}t^{2}}({\mathcal {D}}\psi )(t)\\ {}&=\int _0^{2\pi }\ln \Big (4\sin ^2\frac{t-\zeta }{2} \Big ){\widetilde{\alpha } (t,\zeta )} \psi (\zeta )\,{\text {d}}\zeta +\int _0^{2\pi }{\widetilde{\beta } (t,\zeta )} \psi (\zeta )\,{\text {d}}\zeta , \end{aligned}$$

where

$$\begin{aligned} {\widetilde{\alpha }}(t,\zeta )&=\partial ^2_{tt}\alpha (t,\zeta ),\\ {\widetilde{\beta }}(t,\zeta )&=2\cot \frac{t-\zeta }{2}\partial _t\alpha (t,\zeta )-\alpha (t,\zeta ) \frac{1}{2\sin ^2\frac{t-\zeta }{2}}+\partial ^2_{tt}\beta (t,\zeta ). \end{aligned}$$

By the interpolatory quadrature, the full discretization of \({\mathcal {D}}''\) can be written as

$$\begin{aligned} ({\mathcal {D}}''_n\psi )(t)=\int _0^{2\pi }\ln \Big (4\sin ^2\frac{t-\zeta }{2}\Big ){\mathcal {P}}_n\Big \{{\widetilde{\alpha } (t,\cdot )} \psi \Big \}(\zeta )\,{\text {d}}\zeta +\int _0^{2\pi }{\mathcal {P}}_n\Big \{{\widetilde{\beta } (t,\cdot )} \psi \Big \}(\zeta )\,{\text {d}}\zeta . \end{aligned}$$

Noting \(p>1/2, 0\le q\le p, {\widetilde{\alpha }}(t,t)=0\), and the analyticity of the elements in \({\widetilde{\alpha }}(t,\zeta )\) and \({\widetilde{\beta }}(t,\zeta )\), we have from [15, Lemma 13.21 and Theorem 12.18] that

$$\begin{aligned} \Vert {\mathcal {D}}''_n\psi -{\mathcal {D}}''\psi \Vert _{q+1}\le C_1\frac{1}{n^{p+1-q}}\Vert \psi \Vert _{p},\quad \Vert {\mathcal {D}}''_n\chi -{\mathcal {D}}''\chi \Vert _{q+1}\le {\widetilde{C}}_1\frac{1}{n^{p-q}}\Vert \chi \Vert _{p} \end{aligned}$$

for any \(\psi \in X_n^2\) and \(\chi \in H^p[0,2\pi ]^2\), where the positive constants \(C_1\) and \({\widetilde{C}}_1\) depend on p and q. Since \({\mathcal {D}}''_n\psi =\frac{{\textrm{d}}^{2}}{{\textrm{d}}t^{2}}({\mathcal {D}}_n\psi )\), the above inequalities reduce to

$$\begin{aligned} \Vert {\mathcal {D}}_n\psi -{\mathcal {D}}\psi \Vert _{q+3}\le C_2\frac{1}{n^{p+1-q}}\Vert \psi \Vert _{p}, \quad \Vert {\mathcal {D}}_n\chi -{\mathcal {D}}\chi \Vert _{q+3}\le {\widetilde{C}}_2\frac{1}{n^{p-q}}\Vert \chi \Vert _{p}, \end{aligned}$$

where \(C_2\) and \({\widetilde{C}}_2\) are positive constants depending on p and q. By [15, Theorem 8.13], the proof is completed since the above inequalities hold for any q satisfying \(0\le q\le p\) and \(p>1/2\).

1.2 B.2 Proof of Theorem 7

Recalling the boundedness of \({\mathcal {N}}: H^{p}[0,2\pi ]^2\rightarrow H^{p-1}[0,2\pi ]^2\) and using (27), we have for any \(\chi \in H^p[0,2\pi ]^2, 0\le q\le p, p>1/2\) that

$$\begin{aligned} \Vert ({\mathcal {N}}_n-{\mathcal {N}})\chi \Vert _{q-1}=\Vert {\mathcal {N}}({\mathcal {P}}_n\chi -\chi )\Vert _{q-1}\le C_1\Vert ({\mathcal {P}}_n\chi -\chi )\Vert _{q}\le \frac{C_2}{n^{p-q}}\Vert \chi \Vert _{p}, \end{aligned}$$

where \(C_1\) and \(C_2\) are positive constants depending on q and pq, respectively. For any \(p>1/2\), it is clear to note that \({\mathcal {N}}_n\) and \({\mathcal {N}}_n-{\mathcal {N}}\) are uniformly bounded from \(H^p[0,2\pi ]^2\) to \(H^{p-1}[0,2\pi ]^2\).

For any \(\psi \in X_n^2\), it follows from Theorem 6 and \({\mathcal {N}}_n\psi ={\mathcal {N}}\psi \) that

$$\begin{aligned}&\Vert {\mathcal {N}}_n{\mathcal {D}}_n\psi -{\mathcal {N}}{\mathcal {D}}\psi \Vert _{p+2}\\&\le \Vert {\mathcal {N}}_n({\mathcal {D}}_n-{\mathcal {D}})\psi \Vert _{p+2}+\Vert ({\mathcal {N}} _n-{\mathcal {N}})({\mathcal {D}}\psi -{\mathcal {P}}_n{\mathcal {D}}\psi )\Vert _{p+2} +\Vert ({\mathcal {N}}_n-{\mathcal {N}}){\mathcal {P}}_n{\mathcal {D}}\psi \Vert _{p+2}\\&\preceq \Vert ({\mathcal {D}}_n-{\mathcal {D}})\psi \Vert _{p+3}+\Vert {\mathcal {D}} \psi -{\mathcal {P}} _n{\mathcal {D}}\psi \Vert _{p+3}\\&\preceq 1/n\Vert \psi \Vert _{p}+1/n\Vert {\mathcal {D}}\psi \Vert _{p+4} \preceq 1/n\Vert \psi \Vert _{p}. \end{aligned}$$

Moreover, by Theorem 6, we have for any \(p>1/2\) that \({\mathcal {D}}_n\) and \({\mathcal {D}}_n-{\mathcal {D}}\) are uniformly bounded from \(H^p[0,2\pi ]^2\) to \(H^{p+3}[0,2\pi ]^2\). Combining (27) and (31), and noting the boundedness of \({\mathcal {D}}: H^p[0,2\pi ]^2\rightarrow H^{p+4}[0,2\pi ]^2\) and the uniform boundedness of \({\mathcal {P}}_n: H^{p+2}[0,2\pi ]^2\rightarrow H^{p+2}[0,2\pi ]^2\), we obtain

$$\begin{aligned}&\Vert {\mathcal {D}}^2_n\psi -{\mathcal {D}}^2\psi \Vert _{p+2} \le \Vert {\mathcal {D}}^2_n\psi -{\mathcal {D}}^2\psi \Vert _{p+6}\\&\le \Vert {\mathcal {D}}_n({\mathcal {D}}_n-{\mathcal {D}})\psi \Vert _{p+6} +\Vert ({\mathcal {D}}_n-{\mathcal {D}})({\mathcal {D}}\psi -{\mathcal {P}}_n{\mathcal {D}}\psi )\Vert _{p+6} +\Vert ({\mathcal {D}}_n-{\mathcal {D}}){\mathcal {P}}_n{\mathcal {D}}\psi \Vert _{p+6}\\&\preceq \Vert ({\mathcal {D}}_n-{\mathcal {D}})\psi \Vert _{p+3}+\Vert ({\mathcal {D}}\psi -{\mathcal {P}}_n{\mathcal {D}}\psi )\Vert _{p+3}+1/n\Vert {\mathcal {P}}_n{\mathcal {D}}\psi \Vert _{p+3}\\&\preceq 1/n\Vert \psi \Vert _{p}+1/n\Vert {\mathcal {D}}\psi \Vert _{p+4}+1/n\Vert {\mathcal {D}}\psi \Vert _{p+3} \preceq 1/n\Vert \psi \Vert _{p}. \end{aligned}$$

With the help of \({\mathcal {N}}_1\psi \in X_n^2\), the boundedness of \({\mathcal {N}}_2: H^{p}[0,2\pi ]^2\rightarrow H^{p+1}[0,2\pi ]^2\) and the uniform boundedness of \({\mathcal {D}}_n-{\mathcal {D}}: H^{p-1}[0,2\pi ]^2\) to \(H^{p+2}[0,2\pi ]^2\) and \({\mathcal {P}}_n: H^{p-1}[0,2\pi ]^2\rightarrow H^{p-1}[0,2\pi ]^2\) for \(p>\frac{3}{2}\), we deduce

$$\begin{aligned}&\Vert {\mathcal {D}}_n{\mathcal {N}}_n\psi -{\mathcal {D}}{\mathcal {N}}\psi \Vert _{p+2} =\Vert ({\mathcal {D}}_n-{\mathcal {D}}){\mathcal {N}}\psi \Vert _{p+2}\\&\le \Vert ({\mathcal {D}}_n-{\mathcal {D}})({\mathcal {N}}\psi -{\mathcal {P}}_n{\mathcal {N}}\psi )\Vert _{p+2} +\Vert ({\mathcal {D}}_n-{\mathcal {D}}){\mathcal {P}}_n{\mathcal {N}}\psi \Vert _{p+2}\\&\preceq \Vert {\mathcal {N}}\psi -{\mathcal {P}}_n{\mathcal {N}}\psi \Vert _{p-1}+1/n\Vert {\mathcal {P}}_n{\mathcal {N}}\psi \Vert _{p-1}\\&\le \Vert {\mathcal {N}}_1\psi -{\mathcal {P}}_n{\mathcal {N}}_1\psi \Vert _{p-1}+\Vert {\mathcal {N}}_2\psi -{\mathcal {P}}_n{\mathcal {N}}_2\psi \Vert _{p-1}+1/n\Vert {\mathcal {P}}_n{\mathcal {N}}\psi \Vert _{p-1}\\&\preceq 1/n^2\Vert {\mathcal {N}}_2\psi \Vert _{p+1}+1/n\Vert {\mathcal {N}}\psi \Vert _{p-1} \preceq 1/n\Vert \psi \Vert _{p}. \end{aligned}$$

Combining the above estimates yields

$$\begin{aligned} \Vert {\mathcal {V}}_n\psi -{\mathcal {V}}\psi \Vert _{p+2}&\le \Vert {\mathcal {N}}_n{\mathcal {D}}_n\psi -{\mathcal {N}}{\mathcal {D}}\psi \Vert _{p+2} +\Vert {\mathcal {D}}_n{\mathcal {N}}_n\psi -{\mathcal {D}}{\mathcal {N}}\psi \Vert _{p+2}\\&\quad +\Vert {\mathcal {D}}_n^2\psi -{\mathcal {D}}^2\psi \Vert _{p+2} \\&\preceq 1/n\Vert \psi \Vert _{p}, \end{aligned}$$

which completes the proof by noting that the operators \({\mathcal {E}}^{-1},{\mathcal {P}}_n: H^{p+2}[0,2\pi ]^2\rightarrow H^{p+2}[0,2\pi ]^2\) are uniformly bounded.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Li, P. A Novel Boundary Integral Formulation for the Biharmonic Wave Scattering Problem. J Sci Comput 98, 42 (2024). https://doi.org/10.1007/s10915-023-02429-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02429-6

Keywords

Mathematics Subject Classification

Navigation