Skip to main content
Log in

Recovery Type a Posteriori Error Estimation of an Adaptive Finite Element Method for Cahn–Hilliard Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we derive a novel recovery type a posteriori error estimation of the Crank–Nicolson finite element method for the Cahn–Hilliard equation. To achieve this, we employ both the elliptic reconstruction technique and a time reconstruction technique based on three time-level approximations, resulting in an optimal a posteriori error estimator. We propose a time-space adaptive algorithm that utilizes the derived a posteriori error estimator as error indicators. Numerical experiments are presented to validate the theoretical findings, including comparing with an adaptive finite element method based on a residual type a posteriori error estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Alikakos, N.D., Fusco, G.: The spectrum of the Cahn–Hilliard operator for generic interface in higher space dimensions. Indiana Univ. Math. J. 42(2), 637–674 (1993)

    MathSciNet  Google Scholar 

  2. Bartels, S.: A posteriori error analysis for time-dependent Ginzburg–Landau type equations. Numer. Math. 99, 557–583 (2005)

    MathSciNet  Google Scholar 

  3. Bartels, S., Müller, R.: Error control for the approximation of Allen–Cahn and Cahn–Hilliard equations with a logarithmic potential. Numer. Math. 119(3), 409–435 (2011)

    MathSciNet  Google Scholar 

  4. Bartels, S., Müller, R.: Quasi-optimal and robust a posteriori error estimates in \(L^{\infty }(L^2)\) for the approximation of Allen–Cahn equations past singularities. Math. Comput. 80(274), 761–780 (2011)

    Google Scholar 

  5. Bartels, S., Müller, R., Ortner, C.: Robust a priori and a posteriori error analysis for the approximation of Allen–Cahn and Ginzburg–Landau equations past topological changes. SIAM J. Numer. Anal. 49, 110–134 (2011)

    MathSciNet  Google Scholar 

  6. Bates, P.W., Fife, P.C.: The dynamics of nucleation for the Cahn–Hilliard equation. SIAM J. Appl. Math. 53(4), 990–1008 (1993)

    MathSciNet  Google Scholar 

  7. Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite element method. Math. Comput. 31, 74–111 (1977)

    MathSciNet  Google Scholar 

  8. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Google Scholar 

  9. Chen, X.: Spectrum for the Allen–Cahn, Cahn–Hilliard, and phase-field equations for generic interfaces. Commun. Part. Differ. Equ. 19(7–8), 1371–1395 (1994)

    MathSciNet  Google Scholar 

  10. Chen, Y., Huang, Y., Yi, N.: A SCR-based error estimation and adaptive finite element method for the Allen–Cahn equation. Comput. Math. Appl. 78, 204–223 (2019)

    MathSciNet  Google Scholar 

  11. Chen, Y., Huang, Y., Yi, N.: Recovery type a posteriori error estimation of adaptive finite element method for Allen–Cahn equation. J. Comput. Appl. Math. 369, 112574 (2019)

    MathSciNet  Google Scholar 

  12. Cheng, K., Feng, W., Wang, C., Wise, S.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)

    MathSciNet  Google Scholar 

  13. Chrysafinos, K., Georgoulis, E., Plaka, D.: A posteriori error estimates for the Allen–Cahn problem. SIAM J. Numer. Anal. 58(5), 2662–2683 (2020)

    MathSciNet  Google Scholar 

  14. Diegel, A., Cheng, C., Wise, S.: Stability and convergence of a second-order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 36(4), 1867–1897 (2016)

    MathSciNet  Google Scholar 

  15. Du, Q., Nicolaides, R.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)

    MathSciNet  Google Scholar 

  16. Elliott, C.M., French, D.A.: Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987)

    MathSciNet  Google Scholar 

  17. Elliott, C.M., Songmu, Z.: On the Cahn–Hilliard equation. Arch. Rational Mech. Anal. 96, 339–357 (1986)

    MathSciNet  Google Scholar 

  18. Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn–Hilliard equation of phase transition. Math. Comput. 76, 1093–1117 (2007)

    MathSciNet  Google Scholar 

  19. Feng, X., Li, Y., Xing, Y.: Analysis of mixed interior penalty discontinuous Galerkin methods for the Cahn–Hilliard equation and the Hele–Shaw flow. SIAM J. Numer. Anal. 54(2), 825–847 (2016)

    MathSciNet  Google Scholar 

  20. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)

    MathSciNet  Google Scholar 

  21. Feng, X., Wu, H.: A posteriori error estimates for finite element approximations of the Cahn–Hilliard equation and the Hele–Shaw flow. J. Comput. Math. 26(6), 767–796 (2008)

    MathSciNet  Google Scholar 

  22. Georgoulis, E., Makridakis, C.: On a posteriori error control for the Allen–Cahn problem. Math. Methods Appl. Sci. 37(2), 173–179 (2014)

    MathSciNet  Google Scholar 

  23. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    Google Scholar 

  24. Grisvard, P.: Singularities in Boundary Value Problems. Research Notes in Applied Mathematics. Springer, New York (1992)

    Google Scholar 

  25. Guo, J., Wang, C., Wise, S., Yue, X.: An \(H^{2}\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation. Commun. Math. Sci. 14(2), 489–515 (2016)

    MathSciNet  Google Scholar 

  26. He, L., Zhou, A.: Adaptive finite element analysis for semilinear elliptic problems (in Chinese). Sci. Sin. Math. 46(7), 929–944 (2016)

    Google Scholar 

  27. Heimsund, B., Tai, X., Wang, J.: Superconvergence for the gradient of the finite element approximations by \(L^2\)-projections. SIAM J. Numer. Anal. 40, 1538–1560 (2002)

    MathSciNet  Google Scholar 

  28. Hou, D., Azaiez, M., Xu, C.: A variant of scalar auxiliary variable approaches for gradient flows. J. Comput. Phys. 395, 307–332 (2019)

    MathSciNet  Google Scholar 

  29. Huang, Y., Jiang, K., Yi, N.: Some weighted averaging methods for gradient recovery. Adv. Appl. Math. Mech. 4, 131–155 (2012)

    MathSciNet  Google Scholar 

  30. Huang, Y., Liu, H., Yi, N.: Recovery of interface derivatives from the piecewise \(L^{2}\) projection. J. Comput. Phys. 231, 1230–1243 (2012)

    MathSciNet  Google Scholar 

  31. Huang, Y., Yi, N.: The superconvergent cluster recovery method. J. Sci. Comput. 44, 301–322 (2010)

    MathSciNet  Google Scholar 

  32. Jia, H., Li, Y., Feng, G., Li, K.: An efficient two-grid method for the Cahn–Hilliard equation with the concentration-dependent mobility and the logarithmic Flory-Huggins bulk potential. Appl. Math. Comput. 387, 124548 (2020)

    MathSciNet  Google Scholar 

  33. Lakkis, O., Makridakis, C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75(256), 1627–1658 (2006)

    MathSciNet  Google Scholar 

  34. Lakkis, O., Pryer, T.: Gradient recovery in adaptive finite-element methods for parabolic problem. IMA J. Numer. Anal. 32(1), 246–278 (2012)

    MathSciNet  Google Scholar 

  35. Li, H., Yin, P., Zhang, Z.: A \(C^0\) finite element method for the biharmonic problem with Navier boundary conditions in a polygonal domain. IMA J. Numer. Anal. 43, 1779–1801 (2023)

    MathSciNet  Google Scholar 

  36. Lin, Q., Yan, N.: Construction and Analysis of High Efficient Finite Elements. Hebei University Press, Baoding (1996) (in Chinese)

  37. Liu, H., Yin, P.: Unconditionally energy stable DG schemes for the Cahn–Hilliard equation. J. Comput. Appl. Math. 390, 113375 (2021)

    Google Scholar 

  38. Lozinski, A., Picasso, M., Prachittham, V.: An anisotropic error estimator for the Crank–Nicolson method: application to a parabolic problem. SIAM J. Sci. Comput. 31(4), 2757–2783 (2009)

    MathSciNet  Google Scholar 

  39. Makridakis, C., Nochetto, R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41(4), 1585–1594 (2004)

    MathSciNet  Google Scholar 

  40. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  Google Scholar 

  41. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    MathSciNet  Google Scholar 

  42. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. Ser. A 28, 1669–1691 (2010)

    MathSciNet  Google Scholar 

  43. Wells, G., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218(2), 860–877 (2006)

    MathSciNet  Google Scholar 

  44. Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, Beijing (2008)

    Google Scholar 

  45. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27(11), 1–38 (2017)

    MathSciNet  Google Scholar 

  46. Yi, N.: A posteriori error estimates based on gradient recovery and adaptive finite element methods. Ph.D. thesis, Xiangtan University (2011)

  47. Zienkiewicz, O.C., Zhu, J.Z.: The supercovergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33, 331–1382 (1992)

    Google Scholar 

  48. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the referees for their useful comments and suggestions, which led to improvements of the presentation in this paper.

Funding

Chen’s research was supported by NSFC Project (12201010), Natural Science Research Project of Higher Education in Anhui Province (2022AH040027). Huang’s research was partially supported by NSFC Project (11971410) and China’s National Key R &D Programs (2020YFA0713500). Yi’s research was partially supported by NSFC Project (12071400, 12261131501) and Hunan Provincial NSF Project (2021JJ40189). Yin’s research was supported by the University of Texas at El Paso Startup Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peimeng Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Theorem 3.2

Appendix A. Proof of Theorem 3.2

In this section, we present the proof of the Theorem 3.2. To begin with, we recall the following results.

Lemma A.1

[3] Let \(\dot{V}:=\left\{ \phi \in H^{1}(\Omega ),\bar{\phi }:=\frac{1}{|\Omega |}\int _{\Omega }\phi dx=0\right\} ,\) there exists \(C_{I}>0\) such that for all \(\phi \in \dot{V}\) if \(d=2\) and for all \(\phi \in \dot{V}\cap L^{\infty }(\Omega )\) if \(d=3\), we have

$$\begin{aligned} \Vert \phi \Vert _{L^{3}(\Omega )}^{3}\le C_{I}\Vert \phi \Vert _{L^{\infty }(\Omega )}^{1-\sigma }\Vert \nabla \Delta ^{-1}\phi \Vert ^{\sigma }\Vert \nabla \phi \Vert ^{2}, \end{aligned}$$
(A.1)

where \(\sigma =1\) if \(d=2\) and \(\sigma =\frac{4}{5}\) if \(d=3\).

Lemma A.2

[5] (Generalized Gronwall’s Lemma) Suppose that the nonnegative functions \(y_{1}\in C([0,T])\), \(y_{2},\,y_{3}\in L^{1}(0,T)\), \(a\in L^{\infty }(0,T)\), and the real number \(A\ge 0\) satisfy

$$\begin{aligned} y_{1}(t)+\int _{0}^{t}y_{2}(s)ds\le A+\int _{0}^{t}a(s)y_{1}(s)ds+\int _{0}^{t}y_{3}(s)ds \end{aligned}$$

for all \(t\in [0,T]\). Assume that for \(B\ge 0\), \(\beta \ge 0\) and every \(t\in [0,T]\), we have

$$\begin{aligned} \int _{0}^{t}y_{3}(s)ds\le B\sup _{s\in [0,t]}y_{1}^{\beta }(s)\int _{0}^{t}\left( y_{1}(s)+y_{2}(s)\right) ds. \end{aligned}$$

Setting \(E:=exp\left( \int _{0}^{T}a(s)ds\right) \) and assume that \(8AE\le \left( 8B(1+T)E\right) ^{-1/\beta }\), then we obtain

$$\begin{aligned} \sup _{t\in [0,T]}y_{1}(t)+\int _{0}^{T}y_{2}(s)ds\le 8Aexp\left( \int _{0}^{T}a(s)ds\right) . \end{aligned}$$

To prove Theorem 3.2, we introduce the \(L^{2}\) lifting property for the nonlinear elliptic problem (2.10b). This is inspired by the \(L^{2}\) lifting property for a similar nonlinear elliptic problem discussed in [26]:

$$\begin{aligned} \left\{ \begin{aligned} -\Delta z+b(x,z)&=0,\qquad \text {in}\ \Omega \times (0,T],\\ u&=0, \qquad \text {on}\ \partial \Omega \times [0,T], \end{aligned} \right. \end{aligned}$$
(A.2)

where the nonlinear term b satisfies

$$\begin{aligned} \begin{aligned}{}&{} \sup _{x\in \bar{\Omega }}\left| b(x,z)-b(x,z_{0})+\frac{\partial b}{\partial z}(x,z_{0})(z_{0}-z) \right| \lesssim (1+\max \{|z|^{s},|z_{0}|^{s}\})|z-z_{0}|^{q}, \\ {}&\forall z,\ z_{0}\in R, \end{aligned}\qquad \end{aligned}$$
(A.3)

for \(q\in (1,2],\ s\in [0,5-q]\).

Lemma A.3

(\(L^{2}\) lifting property) Given \(h_{0}\ll 1\). For the nonlinear elliptic problem (2.10b), if \(h=\max \{h_{K},K\in \mathcal {T}_{h}\}\in (0,h_{0}]\), then

$$\begin{aligned} \begin{aligned} \Vert \mu -\mu _{h}\Vert&\le \kappa (h) \Vert \mu -\mu _{h}\Vert _{1,\Omega }, \end{aligned} \end{aligned}$$
(A.4)

where \(\kappa (h)= C_IC_R h^s +\frac{1}{\varepsilon ^2} \hat{C_I}C_R h^s \), here \(C_R,\, C_I,\,\hat{C_I}\) are constants independent of \(\varepsilon \) and h.

Proof

Let \(\omega \in H^{1+s}(\Omega )\) for some \(0<s\le 1\) be the solution to the dual problem of (2.10b): Find \(\omega \in H^{1}(\Omega )\), such that

$$\begin{aligned} \varepsilon a( \omega , v)+\langle \mathfrak {B}(\mu ,\mu _h) \omega ,v\rangle =\langle \mu -\mu _h,v\rangle ,\qquad \forall v\in H^{1}(\Omega ), \end{aligned}$$
(A.5)

where the operator

$$\begin{aligned} \mathfrak {B}(\mu ,\mu _h)=\frac{1}{\varepsilon }\int _{0}^{1}3[\mu _h+\xi (\mu -\mu _h)^2]d\xi . \end{aligned}$$

Obviously, it holds that

$$\begin{aligned} \frac{1}{\varepsilon }\left( \mu ^3-\mu _h^3\right) =\mathfrak {B}(\mu ,\mu _h)(\mu -\mu _h). \end{aligned}$$
(A.6)

By the regularity estimate [23, 24, 35] for the dual problem (A.5),

$$\begin{aligned} |\omega |_{H^{1+s}(\Omega )}\le \frac{1}{\varepsilon }C_R\Vert \mu -\mu _h\Vert _{0,\Omega }. \end{aligned}$$
(A.7)

Let \(I^h: H^1(\Omega )\rightarrow V_h\) be a quasi-interpolator, satisfying

$$\begin{aligned} \Vert \omega -I^h\omega \Vert _{1,\Omega }\le C_I h^s |\omega |_{H^{1+s}}, \end{aligned}$$
(A.8)
$$\begin{aligned} \Vert \omega -I^h\omega \Vert _{0,\Omega }\le \hat{C_I} h^s |\omega |_{H^{1+s}}. \end{aligned}$$
(A.9)

Consider the linearized dual problem (A.5) with \(v=\mu -\mu _h\in H^{1}(\Omega )\), we obtain

$$\begin{aligned} \varepsilon a( \mu -\mu _h,\omega )+\langle \mathfrak {B}(\mu ,\mu _h)(\mu -\mu _h),\omega \rangle =\Vert \mu -\mu _h\Vert ^2. \end{aligned}$$
(A.10)

By Galerkin orthogonality, for \(I^h\omega \in V_h\),

$$\begin{aligned} \varepsilon a( \mu -\mu _h,I^h\omega )+\langle \mathfrak {B}(\mu ,\mu _h)(\mu -\mu _h),I^h\omega \rangle =0. \end{aligned}$$
(A.11)

Subtracting (A.11) from (A.10) and using (A.6), we have

$$\begin{aligned} \varepsilon a( \mu -\mu _h,\omega -I^h\omega )+ \frac{1}{\varepsilon }\langle \mu ^3-\mu _h^3,\omega -I^h\omega \rangle =\Vert \mu -\mu _h\Vert ^2. \end{aligned}$$
(A.12)

By using the Cauchy-Schwarz inequality, interpolation estimate (A.8) and regularity (A.7) for the first term on the left hand side (LHS) of (A.12), it holds

$$\begin{aligned} \begin{aligned} \left| \varepsilon a( \mu -\mu _h,\omega -I^h\omega )\right|&=\left| \varepsilon \left( ( \nabla (\mu -\mu _h),\nabla (\omega -I^h\omega )\right) \right| \\&\le \varepsilon \Vert \nabla (\mu -\mu _h)\Vert \cdot \Vert \nabla (\omega -I^h\omega )\Vert \\&\le \varepsilon \Vert \mu -\mu _h\Vert _{1,\Omega }\cdot \Vert \omega -I^h\omega \Vert _{1,\Omega }\\&\le \varepsilon C_I h^s \Vert \mu -\mu _h\Vert _{1,\Omega }\cdot |\omega |_{H^{1+s}}\\&\le C_I h^sC_R \Vert \mu -\mu _h\Vert _{1,\Omega }\cdot \Vert \mu -\mu _h\Vert _{0,\Omega }. \end{aligned} \end{aligned}$$
(A.13)

For the second term on LHS of (A.12), applying the Cauchy-Schwarz inequality, we have

$$\begin{aligned} \begin{aligned} \left| \frac{1}{\varepsilon }\left\langle \mu ^3-\mu _h^3,\omega -I^h\omega \right\rangle \right|&=\left| \frac{1}{\varepsilon }\left\langle (\mu -\mu _h)(\mu ^2+\mu \mu _h+\mu _h^2),\omega -I^h\omega \right\rangle \right| \\&\le \frac{1}{\varepsilon }\Vert \mu -\mu _h\Vert _{0,p,\Omega }\cdot \Vert \mu ^2+\mu \mu _h +\mu _h^2\Vert _{0,q,\Omega }\cdot \Vert \omega -I^h\omega \Vert _{0,k,\Omega } \end{aligned}\nonumber \\ \end{aligned}$$
(A.14)

with \(\frac{1}{p}+\frac{1}{q}+\frac{1}{k}=1\). Taking \(p=q=4,\ k=2\) in (A.14), and using embedding theorem, interpolation estimate (A.9) and regularity (A.7) give

$$\begin{aligned} \begin{aligned} \left| \frac{1}{\varepsilon }\left\langle \mu ^3-\mu _h^3,\omega -I^h\omega \right\rangle \right|&\le \frac{1}{\varepsilon }\Vert \mu -\mu _h\Vert _{0,4,\Omega }\cdot \Vert \mu ^2+\mu \mu _h +\mu _h^2\Vert _{0,4,\Omega }\cdot \Vert \omega -I^h\omega \Vert _{0,2,\Omega }\\&\le \frac{1}{\varepsilon }\Vert \mu -\mu _h\Vert _{1,\Omega }\cdot \Vert \mu ^2+\mu \mu _h +\mu _h^2\Vert _{1,\Omega }\cdot \Vert \omega -I^h\omega \Vert _{0,\Omega }\\&\le \frac{1}{\varepsilon }\hat{C_I} h^s\Vert \mu -\mu _h\Vert _{1,\Omega }\cdot |\omega |_{H^{1+s}}\\&\le \frac{1}{\varepsilon ^2}\hat{C_I}C_R h^s\Vert \mu -\mu _h\Vert _{1,\Omega }\cdot \Vert \mu -\mu _h\Vert _{0,\Omega }. \end{aligned} \end{aligned}$$
(A.15)

Plugging (A.13) and (A.15) into (A.12) gives

$$\begin{aligned} \begin{aligned} \Vert \mu -\mu _h\Vert ^2&\le C_I h^sC_R \Vert \mu -\mu _h\Vert _{1,\Omega }\cdot \Vert \mu -\mu _h\Vert _{0,\Omega }+\frac{1}{\varepsilon ^2}\hat{C_I}C_R h^s\Vert \mu \\&-\mu _h\Vert _{1,\Omega }\cdot \Vert \mu -\mu _h\Vert _{0,\Omega }. \end{aligned} \end{aligned}$$

Thus, the result of (A.4) is obtained by simplification. \(\square \)

Now, we are ready to present the proof of Theorem 3.2.

Proof

According to (3.7), we have that

$$\begin{aligned} \partial _{t}e_u+\mathcal {A}e_{w} =&-\mathcal {A}\epsilon _{w}+\frac{Aw_{h}^{n}-A w_{h}^{n-1}}{2}+\mathcal {A}(q(t) -q^{n})+w_{h}^{n}-Rw_{h}^{n}+(t-t_{n-\frac{1}{2}})\partial _{n}^{2}u_{h}, \end{aligned}$$
(A.16)
$$\begin{aligned} \varepsilon \mathcal {A}e_{u}-e_{w} =&-\varepsilon \mathcal {A}\epsilon _{u}+\epsilon _{w}+\varepsilon \frac{Au_{h}^{n}-Au_{h}^{n-1}}{2} +\frac{Pf(u_{h}^{n})-Pf(u_{h}^{n-1})}{2\varepsilon }-\frac{w_{h}^{n}-w_{h}^{n-1}}{2}\nonumber \\&+\varepsilon \mathcal {A}(p(t)-p^{n})-(q(t)-q^{n})+\frac{f(u)-f(p^{n})}{\varepsilon } +\frac{1}{\varepsilon }\left( u_{h}^{n}-p^{n}\right) . \end{aligned}$$
(A.17)

To make the conclusion clean, we separate the remaining of this proof into eleven steps.

Step 1: Multiplying both sides of (A.16) by \(-\Delta ^{-1}e_{u}\) and (A.17) by \(e_{u}\), respectively, then adding the resulting equations, we obtain

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}&\Vert \nabla \Delta ^{-1}e_{u}\Vert ^{2}+\varepsilon \Vert \nabla e_{u}\Vert ^{2} =\left( \frac{Aw_{h}^{n}-Aw_{h}^{n-1}}{2},-\Delta ^{-1}e_{u}\right) +\left( \mathcal {A}(q(t)-q^{n}),-\Delta ^{-1}e_{u}\right) \\&+\left( w_{h}^{n}-Rw_{h}^{n},-\Delta ^{-1}e_{u}\right) +\left( (t-t_{n-\frac{1}{2}}) \partial _{n}^{2}u_{h},-\Delta ^{-1}e_{u}\right) \\&-\varepsilon a\left( \epsilon _{u},e_{u}\right) +\varepsilon \left( \frac{Au_{h}^{n}-A u_{h}^{n-1}}{2},e_{u}\right) +\frac{1}{\varepsilon }\left( u_{h}^{n}-p^{n},e_{u}\right) \\&+\left( \frac{Pf(u_{h}^{n}) -Pf(u_{h}^{n-1})}{2\varepsilon },e_{u}\right) +\left( -\frac{w_{h}^{n}-w_{h}^{n-1}}{2},e_{u}\right) \\&+\left( \left( \varepsilon \mathcal {A}\left( p(t)-p^{n}\right) -\frac{1}{\varepsilon } \left( f(p^{n})\frac{t_{n}-t}{\tau _{n}}-f(p^{n-1})\frac{t_{n}-t}{\tau _{n}}\right) -(q(t)-q^{n})\right) ,e_{u}\right) \\&{+}\left( \frac{1}{\varepsilon }\left( f(u_{h}^{n})\frac{t{-}t_{n{-}1}}{\tau _{n}}{+}f(u_{h}^{n-1}) \frac{t_{n}{-}t}{\tau _{n}}{-}f(p^{n}){+}f(p^{n})\frac{t_{n}{-}t}{\tau _{n}}{-}f(p^{n{-}1}) \frac{t_{n}{-}t}{\tau _{n}}\right) ,e_{u}\right) \\&{+}\left( \frac{1}{\varepsilon }\left( f(u_{h}){-}f(u_{h}^{n})\frac{t{-}t_{n-1}}{\tau _{n}}{-}f(u_{h}^{n-1}) \frac{t_{n}{-}t}{\tau _{n}})\right) ,e_{u}\right) {+}\left( \frac{1}{\varepsilon }\left( f(u){-}f(u_{h})\right) ,e_{u}\right) , \end{aligned}$$

for all \(t\in (t_{n-1},t_{n}]\) and each \(n=1,2,\ldots ,N\). Then integrate with respect to t, we get

$$\begin{aligned}&\frac{1}{2}\Vert \nabla \Delta ^{-1}e_{u}^{N}\Vert ^{2}+\int _{0}^{T}\varepsilon \Vert \nabla e_{u}\Vert ^{2}dt \nonumber \\=&\frac{1}{2}\Vert \nabla \Delta ^{-1}e_{u}^{0}\Vert ^{2}+\int _{0}^{T}\left( \frac{Aw_{h}^{n}-A w_{h}^{n-1}}{2}, -\Delta ^{-1}e_{u}\right) dt\nonumber \\ {}&+\int _{0}^{T}\left( w_{h}^{n}-Rw_{h}^{n},-\Delta ^{-1}e_{u}\right) dt +\int _{0}^{T} \left( (t-t_{n-\frac{1}{2}})\partial _{n}^{2}u_{h},-\Delta ^{-1}e_{u}\right) dt \nonumber \\&+\int _{0}^{T}\left( \mathcal {A}(q(t)-q^{n})+q(t)-q^{n},-\Delta ^{-1}e_{u}\right) dt+\int _{0}^{T} -\varepsilon a\left( \epsilon _{u},e_{u}\right) dt\nonumber \\&+\int _{0}^{T}\left( q^{n}-q(t)-(w_{h}^{n}-w_{h}),-\Delta ^{-1}e_{u}\right) dt+\int _{0}^{T} \left( w_{h}^{n}-w_{h},-\Delta ^{-1}e_{u}\right) dt\nonumber \\&+\int _{0}^{T}\varepsilon \left( \frac{Au_{h}^{n}-Au_{h}^{n-1}}{2},e_{u}\right) dt +\int _{0}^{T}\frac{1}{\varepsilon }\left( u_{h}^{n}-p^{n},e_{u}\right) dt\nonumber \\&+\int _{0}^{T}\left( \frac{Pf(u_{h}^{n})-Pf(u_{h}^{n-1})}{2\varepsilon },e_{u}\right) dt +\int _{0}^{T}\left( -\frac{w_{h}^{n}-w_{h}^{n-1}}{2},e_{u}\right) dt\nonumber \\&+\int _{0}^{T}\Big (\Big (\varepsilon \mathcal {A}\Big (p(t)-p^{n}\Big )-\frac{1}{\varepsilon } \Big (h(p^{n})\frac{t_{n}-t}{\tau _{n}}-h(p^{n-1})\frac{t_{n}-t}{\tau _{n}}\nonumber \\&-\frac{1}{2}(t-t_{n-1})(t-t_{n}) \frac{\frac{h(p^{n})-h(p^{n-1})}{\tau _{n}}-\frac{h(p^{n-1})-h(p^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n} +\tau _{n-1}}{2}}\Big )-\Big (q(t)-q^{n}\Big )\Big ),e_{u}\Big ) dt\nonumber \\&+\int _{0}^{T}\Big (\frac{1}{\varepsilon }\left( p^{n}-p^{n-1}-\left( u_{h}^{n}-u_{h}^{n-1}\right) \right) \frac{t_{n}-t}{\tau _{n}}+\frac{1}{2\varepsilon }(t-t_{n-1})(t-t_{n})\nonumber \\&\quad \Big (\frac{\frac{p^{n}-p^{n-1}}{\tau _{n}}-\frac{p^{n-1}-p^{n-2}}{\tau _{n-1}}}{\frac{\tau _{n} +\tau _{n-1}}{2}}-\frac{\frac{u_{h}^{n}-u_{h}^{n-1}}{\tau _{n}} -\frac{u_{h}^{n-1}-u_{h}^{n-2}}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\Big ),e_{u}\Big ) dt \nonumber \\&+\int _{0}^{T}\left( \frac{1}{\varepsilon }\left( u_{h}^{n}-u_{h}^{n-1}\right) \frac{t_{n}-t}{\tau _{n}},e_{u}\right) dt\nonumber \\&{+}\int _{0}^{T}\Big (\frac{1}{\varepsilon }\left( f(u_{h}^{n})\frac{t{-}t_{n{-}1}}{\tau _{n}}{+}f(u_{h}^{n{-}1}) \frac{t_{n}{-}t}{\tau _{n}}{-}f(p^{n}){+}f(p^{n})\frac{t_{n}{-}t}{\tau _{n}}{-}f(p^{n-1})\frac{t_{n}-t}{\tau _{n}}\right) \nonumber \\&+\frac{1}{2\varepsilon }(t-t_{n-1})(t-t_{n})\nonumber \\&\left( \frac{\frac{f(u_{h}^{n})-f(u_{h}^{n-1})}{\tau _{n}}-\frac{f(u_{h}^{n-1}) -f(u_{h}^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}-\frac{\frac{f(p^{n}) -f(p^{n-1})}{\tau _{n}}-\frac{f(p^{n-1})-f(p^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\right) ,e_{u}\Big ) dt\nonumber \\&\quad \int _{0}^{T}\Big (\frac{1}{\varepsilon }\Big (f(u_{h})-f(u_{h}^{n})\frac{t-t_{n-1}}{\tau _{n}} -f(u_{h}^{n-1})\frac{t_{n}-t}{\tau _{n}}-\frac{1}{2}(t-t_{n-1})(t-t_{n})\nonumber \\&\quad \frac{\frac{f(u_{h}^{n})-f(u_{h}^{n-1})}{\tau _{n}}-\frac{f(u_{h}^{n-1}) -f(u_{h}^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\Big ),e_{u}\Big ) dt +\int _{0}^{T}\left( \frac{1}{\varepsilon }\left( f(u)-f(u_{h})\right) ,e_{u}\right) dt\nonumber \\ :=&\frac{1}{2}\Vert \nabla \Delta ^{-1}e_{u}^{0}\Vert ^{2}+\mathcal {B}_{1}+\cdots +\mathcal {B}_{17}, \end{aligned}$$
(A.18)

where

$$\begin{aligned} \mathcal {B}_{1}&:=\int _{0}^{T}\left( w_{h}^{n}-Rw_{h}^{n},-\Delta ^{-1}e_{u}\right) dt;\\ \mathcal {B}_{2}&:=\int _{0}^{T}\left( \frac{Aw_{h}^{n}-A w_{h}^{n-1}}{2},-\Delta ^{-1}e_{u}\right) dt;\\ \mathcal {B}_{3}&:=\int _{0}^{T} \left( (t-t_{n-\frac{1}{2}})\partial _{n}^{2}u_{h},-\Delta ^{-1}e_{u}\right) dt;\\ \mathcal {B}_{4}&:=\int _{0}^{T}\left( \mathcal {A}(q(t)-q^{n})+q(t)-q^{n},-\Delta ^{-1}e_{u}\right) dt;\\ \mathcal {B}_{5}&:=\int _{0}^{T}-\varepsilon a\left( \epsilon _{u},e_{u}\right) dt;\\ \mathcal {B}_{6}&:=\int _{0}^{T}\left( q^{n}-q(t)-(w_{h}^{n}-w_{h}),-\Delta ^{-1}e_{u}\right) dt;\\ \mathcal {B}_{7}&:=\int _{0}^{T}\left( w_{h}^{n}-w_{h},-\Delta ^{-1}e_{u}\right) dt;\\ \mathcal {B}_{8}&:=\int _{0}^{T}\varepsilon \left( \frac{Au_{h}^{n}-A u_{h}^{n-1}}{2},e_{u}\right) dt;\\ \mathcal {B}_{9}&:=\int _{0}^{T}\frac{1}{\varepsilon }\left( u_{h}^{n}-p^{n},e_{u}\right) dt;\\ \mathcal {B}_{10}&:=\int _{0}^{T}\left( \frac{Pf(u_{h}^{n})-Pf(u_{h}^{n-1})}{2\varepsilon },e_{u}\right) dt;\\ \mathcal {B}_{11}&:=-\int _{0}^{T}\left( \frac{ w_{h}^{n}-w_{h}^{n-1}}{2},e_{u}\right) dt;\\ \mathcal {B}_{12}&:=\int _{0}^{T}\Big (\Big (\varepsilon \mathcal {A}\Big (p(t)-p^{n}\Big ) -\frac{1}{\varepsilon }\Big (h(p^{n})\frac{t_{n}-t}{\tau _{n}}-h(p^{n-1})\frac{t_{n}-t}{\tau _{n}}\\&\quad -\frac{1}{2}(t-t_{n-1})(t-t_{n}) \frac{\frac{h(p^{n})-h(p^{n-1})}{\tau _{n}}-\frac{h(p^{n-1})-h(p^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n} +\tau _{n-1}}{2}}\Big )-\Big (q(t)-q^{n}\Big )\Big ),e_{u}\Big ) dt;\\ \mathcal {B}_{13}&:=\int _{0}^{T}\Big (\frac{1}{\varepsilon }\left( p^{n}-p^{n-1} -\left( u_{h}^{n}-u_{h}^{n-1}\right) \right) \frac{t_{n}-t}{\tau _{n}}+\frac{1}{2\varepsilon }(t-t_{n-1})(t-t_{n})\\&\quad \Big (\frac{\frac{p^{n}-p^{n-1}}{\tau _{n}}-\frac{p^{n-1} -p^{n-2}}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}-\frac{\frac{u_{h}^{n}-u_{h}^{n-1}}{\tau _{n}} -\frac{u_{h}^{n-1}-u_{h}^{n-2}}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\Big ),e_{u}\Big ) dt;\\ \mathcal {B}_{14}&:=\int _{0}^{T}\left( \frac{1}{\varepsilon }\left( u_{h}^{n}-u_{h}^{n-1}\right) \frac{t_{n}-t}{\tau _{n}},e_{u}\right) dt;\\ \mathcal {B}_{15}&:{=}\int _{0}^{T}\Big (\frac{1}{\varepsilon }\left( f(u_{h}^{n}) \frac{t{-}t_{n{-}1}}{\tau _{n}}{+}f(u_{h}^{n{-}1})\frac{t_{n}{-}t}{\tau _{n}}{-}f(p^{n}) {+}f(p^{n})\frac{t_{n}-t}{\tau _{n}}{-}f(p^{n-1})\frac{t_{n}-t}{\tau _{n}}\right) \\&\quad +\frac{1}{2\varepsilon }(t-t_{n-1})(t-t_{n})\\&\left( \frac{\frac{f(u_{h}^{n})-f(u_{h}^{n-1})}{\tau _{n}}-\frac{f(u_{h}^{n-1})-f(u_{h}^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}-\frac{\frac{f(p^{n})-f(p^{n-1})}{\tau _{n}} -\frac{f(p^{n-1})-f(p^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\right) ,e_{u}\Big ) dt;\\ \mathcal {B}_{16}&:=\int _{0}^{T}\Big (\frac{1}{\varepsilon }\Big (f(u_{h})-f(u_{h}^{n}) \frac{t-t_{n-1}}{\tau _{n}}-f(u_{h}^{n-1})\frac{t_{n}-t}{\tau _{n}}\\&\quad -\frac{1}{2}(t-t_{n-1})(t-t_{n})\frac{\frac{f(u_{h}^{n})-f(u_{h}^{n-1})}{\tau _{n}} -\frac{f(u_{h}^{n-1})-f(u_{h}^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\Big ),e_{u}\Big ) dt;\\ \mathcal {B}_{17}&:=\int _{0}^{T}\left( \frac{1}{\varepsilon }\left( f(u)-f(u_{h})\right) ,e_{u}\right) dt. \end{aligned}$$

Next we estimate each of the terms \(\{\mathcal {B}_{j}\}_{j=1,\ldots ,17}\), separately.

Step 2: First, the term \(\mathcal {B}_{1}\), which contains a spatial discretization error term, is bounded by using Schwarz inequality, the Nitche technique and interpolation error estimation

$$\begin{aligned} \mathcal {B}_{1}=&\int _{0}^{T}\left( w_{h}^{n}-Rw_{h}^{n},-\Delta ^{-1}e_{u}\right) dt\nonumber \\ =&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left( w_{h}^{n}-Rw_{h}^{n},-\Delta ^{-1}e_{u}\right) dt\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| w_{h}^{n} -Rw_{h}^{n}\right\| \cdot \left\| \Delta ^{-1}e_{u}\right\| dt\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}C_{3}h\left\| w_{h}^{n} -Rw_{h}^{n}\right\| _{1,\Omega }\left\| \Delta ^{-1}e_{u}\right\| dt. \end{aligned}$$
(A.19)

While h is small enough, it can be ignored. In the same way, the term \(\mathcal {B}_{6}\) can be also ignored.

Similarly, the time discretization terms \(\mathcal {B}_{2}\) and \(\mathcal {B}_{3}\) can be estimated as

$$\begin{aligned} \mathcal {B}_{2}&=\int _{0}^{T}\left( \frac{Aw_{h}^{n}-Aw_{h}^{n-1}}{2},-\Delta ^{-1}e_{u}\right) dt\nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| \frac{Aw_{h}^{n}-A w_{h}^{n-1}}{2} \right\| _{-1}\cdot \left\| \nabla \Delta ^{-1}e_{u}\right\| dt\nonumber \\&:=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\gamma _{w}^{n}\left\| \nabla \Delta ^{-1}e_{u}\right\| dt.\end{aligned}$$
(A.20)
$$\begin{aligned} \mathcal {B}_{3}&=\int _{0}^{T} \left( (t-t_{n-\frac{1}{2}}) \partial _{n}^{2}u_{h},-\Delta ^{-1}e_{u}\right) dt\nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| \frac{\tau _{n}^{2}}{8} \cdot \partial _{n}^{2}u_{h}\right\| _{-1}\cdot \left\| \nabla \Delta ^{-1}e_{u}\right\| dt\nonumber \\&:=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\beta _{u}^{n}\left\| \nabla \Delta ^{-1}e_{u}\right\| dt. \end{aligned}$$
(A.21)

Step 3: For the term \(\mathcal {B}_{4}\), based on the definition of elliptic reconstruction, we have

$$\begin{aligned} \mathcal {B}_{4}&=\int _{0}^{T}\left( \mathcal {A}(q(t)-q^{n})+q(t)-q^{n},-\Delta ^{-1}e_{u}\right) dt\nonumber \\&=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\Big (\mathcal {A}\Big (\frac{t-t_{n-1}}{\tau _{n}}q^{n} +\frac{t_{n}-t}{\tau _{n}}q^{n-1}+\frac{1}{2}(t-t_{n-1})(t-t_{n})\partial _{n}^{2}q-q^{n}\Big )\nonumber \\&\quad +\Big (\frac{t-t_{n-1}}{\tau _{n}}q^{n}+\frac{t_{n}-t}{\tau _{n}}q^{n-1} +\frac{1}{2}(t-t_{n-1})(t-t_{n})\partial _{n}^{2}q-q^{n}\Big ),-\Delta ^{-1}e_{u}\Big ) dt\nonumber \\&=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\Big ((((\mathcal {A}Rw_{h}^{n-1}+Rw_{h}^{n-1}) -(\mathcal {A}Rw_{h}^{n}+Rw_{h}^{n}))\frac{t_{n}-t}{\tau _{n}}\nonumber \\&\quad +\frac{1}{2}(t-t_{n-1})(t-t_{n})(\partial _{n}^{2}\mathcal {A}q+\partial _{n}^{2}q)), -\Delta ^{-1}e_{u}\Big ) dt\nonumber \\&{\le }\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| (\mathcal {A}Rw_{h}^{n-1}+Rw_{h}^{n-1} {-}(\mathcal {A}Rw_{h}^{n}{+}Rw_{h}^{n}))\frac{t_{n}-t}{\tau _{n}} {+}\frac{\tau _{n}^{2}}{8}\partial _{n}^{2}(\mathcal {A}Rw_{h}{+}Rw_{h})\right\| _{-1}\cdot \nonumber \\&\quad \left\| \nabla \Delta ^{-1}e_{u}\right\| dt\nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\Big (\left\| Aw_{h}^{n-1}+w_{h}^{n-1} -(Aw_{h}^{n}+w_{h}^{n})\right\| _{-1}+\left\| \frac{\tau _{n}^{2}}{8} \partial _{n}^{2}(Aw_{h}+w_{h})\right\| _{-1}\Big )\cdot \nonumber \\&\quad \left\| \nabla \Delta ^{-1}e_{u}\right\| dt\nonumber \\ :&=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\eta _{w}^{n}\cdot \left\| \nabla \Delta ^{-1}e_{u}\right\| dt. \end{aligned}$$
(A.22)

Step 4: The term \(\mathcal {B}_{5}\) yields the spatial discretization error, which is bounded as follows

$$\begin{aligned} \mathcal {B}_{5}&=-\int _{0}^{T}\varepsilon a(\epsilon _{u},e_{u})dt\nonumber \\&=-\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\varepsilon a(\epsilon _{u},e_{u})dt\nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\varepsilon \Vert \nabla \epsilon _{u}\Vert \cdot \Vert \nabla e_{u}\Vert dt\nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left( 2\varepsilon ^{-2}\Vert \nabla \epsilon _{u}\Vert ^{2} +\frac{\varepsilon ^{4}}{8}\Vert \nabla e_{u}\Vert ^{2}\right) dt\nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}} 2\varepsilon ^{-2}\left\| \nabla \epsilon _{u}\right\| ^{2}dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{\varepsilon ^{4}}{8}\left\| \nabla e_{u}\right\| ^{2}dt, \end{aligned}$$
(A.23)

and in view of the triangle inequality and the linearity of the operators G and \(\nabla \), we get

$$\begin{aligned} \int _{t_{n-1}}^{t_{n}}\Vert \nabla \epsilon _{u}\Vert ^{2}dt&=\int _{t_{n-1}}^{t_{n}}\Vert \nabla (p-u_{h})\Vert ^{2}dt\nonumber \\&=\int _{t_{n-1}}^{t_{n}}\Big \Vert \nabla \Big (\Big (Ru_{h}^{n}-u_{h}^{n}\Big )\frac{t-t_{n-1}}{\tau _{n}} +\Big (Ru_{h}^{n-1}-u_{h}^{n-1}\Big )\frac{t_{n}-t}{\tau _{n}}\nonumber \\&\quad +\frac{1}{2}(t-t_{n-1})(t-t_{n})(\partial _{n}^{2}p-\partial _{n}^{2}u_{h})\Big )\Big \Vert ^{2}dt\nonumber \\&\le \int _{t_{n-1}}^{t_{n}}\bigg (\big \Vert \nabla \big (Ru_{h}^{n}-u_{h}^{n}\big )\big \Vert ^{2} \Big (\frac{t-t_{n-1}}{\tau _{n}}\Big )^{2}+\big \Vert \nabla \big (Ru_{h}^{n-1}-u_{h}^{n-1}\big ) \big \Vert ^{2}\Big (\frac{t_{n}-t}{\tau _{n}}\Big )^{2}\nonumber \\&\quad +\frac{(t-t_{n-1})^{2}(t-t_{n})^{2}}{4}\Vert \partial _{n}^{2}\nabla p -\partial _{n}^{2}\nabla u_{h}\Vert ^{2}\nonumber \\&\quad +2\big \Vert \nabla \big (Ru_{h}^{n}-u_{h}^{n}\big )\big \Vert \cdot \big \Vert \nabla \big (Ru_{h}^{n-1} -u_{h}^{n-1}\big )\big \Vert \frac{(t-t_{n-1})(t_{n}-t)}{\tau _{n}^{2}}\nonumber \\&\quad +2\big \Vert \nabla \big (Ru_{h}^{n}-u_{h}^{n}\big )\big \Vert \cdot \Vert \partial _{n}^{2}\nabla p-\partial _{n}^{2}\nabla u_{h}\Vert \frac{(t-t_{n-1})^{2}(t-t_{n})}{2\tau _{n}}\nonumber \\&\quad +2\big \Vert \nabla \big (Ru_{h}^{n-1}-u_{h}^{n-1}\big )\big \Vert \cdot \Vert \partial _{n}^{2}\nabla p -\partial _{n}^{2}\nabla u_{h}\Vert \frac{(t-t_{n-1})(t-t_{n})^{2}}{2\tau _{n}} \bigg )dt\nonumber \\&\le C_{0}^{2}\left( (\mathcal {E}_{u}^{n})^{2}\frac{(t-t_{n-1})^{3}}{3(t_{n} -t_{n-1})^{2}}\left. \right| _{t_{n-1}}^{t_{n}}-(\mathcal {E}_{u}^{n-1})^{2}\frac{(t_{n}-t)^{3}}{3(t_{n}-t_{n-1})^{2}}\left. \right| _{t_{n-1}}^{t_{n}}\right. \nonumber \\&\quad \left. +2\mathcal {E}_{u}^{n}\mathcal {E}_{u}^{n-1}\frac{\frac{1}{2}(t_{n}+t_{n-1})t^{2} -\frac{1}{3}t^{3}-t_{n}t_{n-1}\cdot t}{(t_{n}-t_{n-1})^{2}}\left. \right| _{t_{n-1}}^{t_{n}}\right) \nonumber \\&\quad +\frac{\tau _{n}^{3}}{12}C_{0}\Vert \partial _{n}^{2}\nabla p-\partial _{n}^{2}\nabla u_{h}\Vert \Big (\mathcal {E}_{u}^{n}+\mathcal {E}_{u}^{n-1}\Big )+\frac{\tau _{n}^{5}}{120}\Vert \partial _{n}^{2}\nabla p-\partial _{n}^{2}\nabla u_{h}\Vert ^{2}\nonumber \\&\le \frac{C_{0}^{2}}{3}\tau _{n}\left( (\mathcal {E}_{u}^{n})^{2}+(\mathcal {E}_{u}^{n-1})^{2} +\mathcal {E}_{u}^{n}\mathcal {E}_{u}^{n-1}\right) \nonumber \\&\quad +C_{0}^{2}\frac{\tau _{n}^{2}\tau _{n-1}\Big (\mathcal {E}_{u}^{n}+\mathcal {E}_{u}^{n-1}\Big ) +\tau _{n}^{3}\Big (\mathcal {E}_{u-1}^{n}+\mathcal {E}_{u}^{n-2}\Big )}{6\tau _{n-1}(\tau _{n}+\tau _{n-1})} \Big (\mathcal {E}_{u}^{n}+\mathcal {E}_{u}^{n-1}\Big )\nonumber \\&\quad +C_{0}^{2}\tau _{n}^{3}\frac{\Big (\tau _{n-1}\Big (\mathcal {E}_{u}^{n}+\mathcal {E}_{u}^{n-1}\Big ) +\tau _{n}\Big (\mathcal {E}_{u-1}^{n}+\mathcal {E}_{u}^{n-2}\Big )\Big )^{2}}{30\tau _{n-1}^{2}(\tau _{n}+\tau _{n-1})^{2}}\nonumber \\&:= \widetilde{\mathcal {E}_{u}^{n}}^{2}, \end{aligned}$$
(A.24)

then taking (A.24) into (A.23), we get

$$\begin{aligned} \begin{aligned} \mathcal {B}_{5}\le \sum _{n=1}^{N}2\varepsilon ^{-2}\widetilde{\mathcal {E}_{u}^{n}}^{2} +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{\varepsilon ^{4}}{8}\left\| \nabla e_{u}\right\| ^{2}dt. \end{aligned} \end{aligned}$$
(A.25)

Similarly, the spatial discretization error term \(\mathcal {B}_{9}\) is estimated as follows

$$\begin{aligned} \mathcal {B}_{9}=&\int _{0}^{T}\frac{1}{\varepsilon }\left( u_{h}^{n}-p^{n},e_{u}\right) dt\nonumber \\ =&\sum _{n=1}^{N}\frac{1}{\varepsilon }\int _{t_{n-1}}^{t_{n}}\left( u_{h}^{n}-Ru_{h}^{n},e_{u}\right) dt\nonumber \\ \le&\sum _{n=1}^{N}\frac{1}{\varepsilon }\int _{t_{n-1}}^{t_{n}} \left\| u_{h}^{n}-Ru_{h}^{n}\right\| \cdot \left\| e_{u}\right\| dt\nonumber \\ \le&\sum _{n=1}^{N}\frac{1}{\varepsilon }\int _{t_{n-1}}^{t_{n}}\kappa (h) \left\| u_{h}^{n}-Ru_{h}^{n}\right\| _{1,\Omega }\left\| e_{u}\right\| dt, \end{aligned}$$
(A.26)

where we have used Lemma A.3 in the last inequality. Since h could be small enough, the term \(B_9\) can be ignored. With a similar argument, the term \(\mathcal {B}_{13}\) can be also ignored.

Step 5: The time discretization term \(\mathcal {B}_{7}\) is bounded as follows

$$\begin{aligned} \mathcal {B}_{7}&=\int _{0}^{T}\left( w_{h}^{n}-w_{h},-\Delta ^{-1}e_{u}\right) dt\nonumber \\&=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left( (w_{h}^{n}-w_{h}^{n-1})\frac{t_{n}-t}{\tau _{n}} -\frac{1}{2}(t-t_{n-1})(t-t_{n})\partial _{n}^{2}w_{h},-\Delta ^{-1}e_{u}\right) dt\nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left( \left\| w_{h}^{n}-w_{h}^{n-1}\right\| _{-1} +\left\| \frac{\tau _{n}^{2}}{8}\partial _{n}^{2}w_{h}\right\| _{-1}\right) \left\| \nabla \Delta ^{-1}e_{u}\right\| dt\nonumber \\&:=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\delta _{w}^{n}\cdot \left\| \nabla \Delta ^{-1}e_{u}\right\| dt. \end{aligned}$$
(A.27)

Similarly, the terms \(\mathcal {B}_{8}\), \(\mathcal {B}_{10}\), \(\mathcal {B}_{11}\), \(\mathcal {B}_{14}\) are also the time discretization terms, and they are estimated as follows

$$\begin{aligned} \mathcal {B}_{8}&=\int _{0}^{T}\varepsilon \left( \frac{Au_{h}^{n}-Au_{h}^{n-1}}{2},e_{u}\right) dt\nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\varepsilon \left\| \frac{Au_{h}^{n}-A u_{h}^{n-1}}{2}\right\| \cdot \left\| e_{u}\right\| dt\nonumber \\ :&=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\gamma _{u}^{n}\left\| e_{u}\right\| dt, \end{aligned}$$
(A.28)
$$\begin{aligned} \mathcal {B}_{10}=&\int _{0}^{T}\left( \frac{Pf(u_{h}^{n})-Pf(u_{h}^{n-1})}{2\varepsilon },e_{u}\right) dt\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| \frac{Pf(u_{h}^{n}) -Pf(u_{h}^{n-1})}{2\varepsilon }\right\| \left\| e_{u}\right\| dt\nonumber \\ :=&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\xi _{u}^{n}\cdot \left\| e_{u}\right\| dt, \end{aligned}$$
(A.29)
$$\begin{aligned} \mathcal {B}_{11}=&-\int _{0}^{T}\left( \frac{w_{h}^{n}-w_{h}^{n-1}}{2},e_{u}\right) dt\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| \frac{w_{h}^{n}-w_{h}^{n-1}}{2}\right\| \left\| e_{u}\right\| dt\nonumber \\ :=&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\beta _{w}^{n}\cdot \left\| e_{u}\right\| dt,\end{aligned}$$
(A.30)
$$\begin{aligned} \mathcal {B}_{14}&=\int _{0}^{T}\left( \frac{1}{\varepsilon }\left( u_{h}^{n}-u_{h}^{n-1}\right) \frac{t_{n}-t}{\tau _{n}},e_{u}\right) \nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| \frac{u_{h}^{n}-u_{h}^{n-1}}{\varepsilon }\right\| \left\| e_{u}\right\| dt\nonumber \\&:=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\delta _{u}^{n}\cdot \left\| e_{u}\right\| dt. \end{aligned}$$
(A.31)

Step 6: The term \(\mathcal {B}_{12}\), which also contains a time discretization term, is estimated by using the definitions of \(w^{n}\), w and \(R^{n}\).

$$\begin{aligned} \mathcal {B}_{12}&=\int _{0}^{T}\Big (\Big (\varepsilon \mathcal {A}\Big (p(t)-p^{n}\Big ) -\frac{1}{\varepsilon }\Big (h(p^{n})\frac{t_{n}-t}{\tau _{n}}-h(p^{n-1})\frac{t_{n}-t}{\tau _{n}}\nonumber \\&\quad -\frac{1}{2}(t-t_{n-1})(t-t_{n}) \frac{\frac{h(p^{n})-h(p^{n-1})}{\tau _{n}}-\frac{h(p^{n-1})-h(p^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\Big )-\Big (q(t)-q^{n}\Big )\Big ),e_{u}\Big ) dt\nonumber \\&=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\Big (\Big (\varepsilon \mathcal {A}\Big (p^{n} \frac{t-t_{n-1}}{\tau _{n}}+p^{n-1}\frac{t_{n}-t}{\tau _{n}}+\frac{1}{2}(t-t_{n-1})(t-t_{n})\partial _{n}^{2}p-p^{n}\Big )\nonumber \\&\quad -\frac{1}{\varepsilon }\Big (h(p^{n})-h(p^{n-1})\Big )\frac{t_{n}-t}{\tau _{n}} +\frac{1}{2\varepsilon }(t-t_{n-1})(t-t_{n})\frac{\frac{h(p^{n})-h(p^{n-1})}{\tau _{n}} -\frac{h(p^{n-1})-h(p^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\nonumber \\&\quad -\Big (q^{n}\frac{t-t_{n-1}}{\tau _{n}}+q^{n-1}\frac{t_{n}-t}{\tau _{n}} +\frac{1}{2}(t-t_{n-1})(t-t_{n})\partial _{n}^{2}q-q^{n}\Big )\Big ),e_{u}\Big ) dt\nonumber \\&=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\Big (\Big (\big (\varepsilon \mathcal {A}Ru_{h}^{n-1} +\frac{1}{\varepsilon }h(Ru_{h}^{n-1})-q^{n-1}\big )-\big (\varepsilon \mathcal {A}Ru_{h}^{n} +\frac{1}{\varepsilon }h(Ru_{h}^{n})-q^{n}\big )\Big )\frac{t_{n}-t}{\tau _{n}}\nonumber \\&\quad +\frac{\frac{(\varepsilon \mathcal {A}p^{n}+\frac{ h(p^{n})}{\varepsilon }-q^{n}) -(\varepsilon \mathcal {A}p^{n-1}+\frac{ h(p^{n-1})}{\varepsilon }-q^{n-1})}{\tau _{n}} -\frac{(\varepsilon \mathcal {A}p^{n-1}+\frac{ h(p^{n-1})}{\varepsilon }-q^{n-1}) -(\varepsilon \mathcal {A}p^{n-2}+\frac{ h(p^{n-2})}{\varepsilon }-q^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\nonumber \\&\quad \frac{(t-t_{n-1})(t-t_{n})}{2},e_{u}\Big ) dt\nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}} \Big (2\Big \Vert \Big (\varepsilon Au_{h}^{n-1} +\frac{1}{\varepsilon }h(u_{h}^{n-1})-w_{h}^{n-1}\Big )-\Big (\varepsilon Au_{h}^{n} +\frac{1}{\varepsilon }h(u_{h}^{n})-w_{h}^{n}\Big )\Big \Vert \nonumber \\&\quad +\Big \Vert \Big (\varepsilon Au_{h}^{n-1}+\frac{1}{\varepsilon }h(u_{h}^{n-1}) -w_{h}^{n-1}\Big )-\Big (\varepsilon Au_{h}^{n-2}+\frac{1}{\varepsilon }h(u_{h}^{n-2}) -w_{h}^{n-2}\Big ) \Big \Vert \Big )\cdot \Vert e_{u}\Vert dt\nonumber \\&=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}} \theta _{u}^{n}\cdot \Vert e_{u}\Vert dt. \end{aligned}$$
(A.32)

Step 7: The term \(\mathcal {B}_{15}\) also yields a time discretization error, which is estimated by using Lagrange mean value theorem and embedding theorem.

$$\begin{aligned} \mathcal {B}_{15}{=}&\int _{0}^{T}\Big (\frac{1}{\varepsilon }\left( f(u_{h}^{n}) \frac{t{-}t_{n{-}1}}{\tau _{n}}{+}f(u_{h}^{n-1})\frac{t_{n}{-}t}{\tau _{n}}{-}f(p^{n}) {+}f(p^{n})\frac{t_{n}-t}{\tau _{n}}{-}f(p^{n-1})\frac{t_{n}-t}{\tau _{n}}\right) \nonumber \\&+\frac{1}{2\varepsilon }(t-t_{n-1})(t-t_{n})\nonumber \\&\left( \frac{\frac{f(u_{h}^{n})-f(u_{h}^{n-1})}{\tau _{n}}-\frac{f(u_{h}^{n-1}) -f(u_{h}^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}-\frac{\frac{f(p^{n}) -f(p^{n-1})}{\tau _{n}}-\frac{f(p^{n-1})-f(p^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n} +\tau _{n-1}}{2}}\right) ,e_{u}\Big ) dt\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left( \frac{t-t_{n-1}}{\tau _{n}\varepsilon } \left( f(u_{h}^{n})-f(p^{n})\right) ,e_{u}\right) dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}} \left( \frac{t_{n}-t}{\tau _{n}\varepsilon }\left( f(u_{h}^{n-1})-f(p^{n-1})\right) ,e_{u}\right) dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left( \frac{1}{2\varepsilon }(t-t_{n-1})(t-t_{n}) \frac{\frac{f(u_{h}^{n})-f(p^{n})}{\tau _{n}}}{\frac{\tau _{n}+\tau _{n-1}}{2}},e_{u}\right) dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left( \frac{1}{\varepsilon }(t-t_{n-1})(t-t_{n}) \frac{\frac{f(u_{h}^{n-1})-f(p^{n-1})}{\tau _{n}}}{\frac{\tau _{n}+\tau _{n-1}}{2}},e_{u}\right) dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left( \frac{1}{2\varepsilon }(t-t_{n-1})(t-t_{n}) \frac{\frac{f(u_{h}^{n-2})-f(p^{n-2})}{\tau _{n}}}{\frac{\tau _{n}+\tau _{n-1}}{2}},e_{u}\right) dt\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{3}{2\varepsilon }\left\| f'(\xi _{1})\right\| _{0,3,\Omega } \cdot \left\| u_{h}^{n}-p^{n}\right\| _{0,6,\Omega }\cdot \left\| e_{u}\right\| dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{2}{\varepsilon }\left\| f'(\xi _{2})\right\| _{0,3,\Omega } \cdot \left\| u_{h}^{n-1}-p^{n-1}\right\| _{0,6,\Omega }\cdot \left\| e_{u}\right\| dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{2\varepsilon }\left\| f'(\xi _{3})\right\| _{0,3,\Omega } \cdot \left\| u_{h}^{n-2}-p^{n-2}\right\| _{0,6,\Omega }\cdot \left\| e_{u}\right\| dt\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{3}{2\varepsilon }\left\| f'(\xi _{1})\right\| _{1,\Omega } \cdot \left\| u_{h}^{n}-p^{n}\right\| _{1,\Omega }\cdot \left\| e_{u}\right\| dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{2}{\varepsilon }\left\| f'(\xi _{2})\right\| _{1,\Omega } \cdot \left\| u_{h}^{n-1}-p^{n-1}\right\| _{1,\Omega }\cdot \left\| e_{u}\right\| dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{2\varepsilon }\left\| f'(\xi _{3})\right\| _{1,3,\Omega } \cdot \left\| u_{h}^{n-2}-p^{n-2}\right\| _{1,6,\Omega }\cdot \left\| e_{u}\right\| dt\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{\varepsilon }C\mathcal {E}_{u}^{n}\left\| e_{u}\right\| dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{\varepsilon }C\mathcal {E}_{u}^{n-1}\left\| e_{u}\right\| dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{\varepsilon }C\mathcal {E}_{u}^{n-2}\left\| e_{u}\right\| dt\nonumber \\ :=&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\alpha _{u}^{n}\left\| e_{u}\right\| dt. \end{aligned}$$
(A.33)

Step 8: In order to estimate the term \(\mathcal {B}_{16}\), which also yields a time discretization error, we first simplify the following formula

$$\begin{aligned}&f(u_{h})-f(u_{h}^{n})\frac{t-t_{n-1}}{\tau _{n}}-f(u_{h}^{n-1})\frac{t_{n}-t}{\tau _{n}} -\frac{1}{2}(t-t_{n-1})(t-t_{n})\nonumber \\&\frac{\frac{f(u_{h}^{n})-f(u_{h}^{n-1})}{\tau _{n}}-\frac{f(u_{h}^{n-1}) -f(u_{h}^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\nonumber \\&\quad =\big [3(u_{h}^{n})^{2}u_{h}^{n-1}-2(u_{h}^{n})^{3}-(u_{h}^{n-1})^{3}\big ]\cdot \left( \frac{t-t_{n-1}}{\tau _{n}}\right) ^{2}\frac{t_{n}-t}{\tau _{n}}\nonumber \\&\quad +\big [3u_{h}^{n}(u_{h}^{n-1})^{2}-(u_{h}^{n})^{3}-2(u_{h}^{n-1})^{3}\big ]\cdot \frac{t-t_{n-1}}{\tau _{n}}\left( \frac{t_{n}-t}{\tau _{n}}\right) ^{2}\nonumber \\&\quad +\big [3(u_{h}^{n})^{2}\partial _{n}^{2}u_{h}-3u_{h}^{n}u_{h}^{n-1}\partial _{n}^{2}u_{h}\big ] \cdot \frac{1}{2}(t-t_{n-1})(t-t_{n})\left( \frac{t-t_{n-1}}{\tau _{n}}\right) ^{2}\nonumber \\&\quad +\big [3(u_{h}^{n-1})^{2}\partial _{n}^{2}u_{h}-3u_{h}^{n}u_{h}^{n-1}\partial _{n}^{2}u_{h}\big ] \cdot \frac{1}{2}(t-t_{n-1})(t-t_{n})\left( \frac{t_{n}-t}{\tau _{n}}\right) ^{2}\nonumber \\&\quad +\big [3u_{h}^{n}u_{h}^{n-1}\partial _{n}^{2}u_{h}-\frac{\frac{(u_{h}^{n})^{3} -(u_{h}^{n-1})^{3}}{\tau _{n}}-\frac{(u_{h}^{n-1})^{3}-(u_{h}^{n-2})^{3}}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\big ]\cdot \frac{1}{2}(t-t_{n-1})(t-t_{n})\nonumber \\&\quad +\Big [\big (3u_{h}^{n}(\partial _{n}^{2}u_{h})^{2}-3u_{h}^{n-1}(\partial _{n}^{2}u_{h})^{2}\big ) \cdot \left( \frac{t-t_{n-1}}{\tau _{n}}\right) +3u_{h}^{n-1}(\partial _{n}^{2}u_{h})^{2}\Big ]\nonumber \\&\quad \cdot \Big (\frac{1}{2}(t-t_{n-1})(t-t_{n})\Big )^{2}+\Big [\Big (\frac{1}{2}(t-t_{n-1})(t-t_{n})\Big )^{3}(\partial _{n}^{2}u_{h})^{3}\Big ], \end{aligned}$$
(A.34)

thus we have

$$\begin{aligned} \mathcal {B}_{16}&=\int _{0}^{T}\Big (\frac{1}{\varepsilon }\Big (f(u_{h})-f(u_{h}^{n})\frac{t-t_{n-1}}{\tau _{n}}-f(u_{h}^{n-1}) \frac{t_{n}-t}{\tau _{n}}\nonumber \\&\quad -\frac{1}{2}(t-t_{n-1})(t-t_{n}) \frac{\frac{f(u_{h}^{n})-f(u_{h}^{n-1})}{\tau _{n}}-\frac{f(u_{h}^{n-1})-f(u_{h}^{n-2})}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\Big ),e_{u}\Big ) dt\nonumber \\&=\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{\varepsilon } \Big ( \Big [3(u_{h}^{n})^{2}u_{h}^{n-1} -2(u_{h}^{n})^{3}-(u_{h}^{n-1})^{3}\Big ]\cdot \Big (\frac{t-t_{n-1}}{\tau _{n}}\Big )^{2}\frac{t_{n}-t}{\tau _{n}}\nonumber \\&\quad +\Big [3u_{h}^{n}(u_{h}^{n-1})^{2}-(u_{h}^{n})^{3}-2(u_{h}^{n-1})^{3}\Big ]\cdot \frac{t-t_{n-1}}{\tau _{n}}\Big (\frac{t_{n}-t}{\tau _{n}}\Big )^{2}\nonumber \\&\quad +\Big [3(u_{h}^{n})^{2}\partial _{n}^{2}u_{h}-3u_{h}^{n}u_{h}^{n-1}\partial _{n}^{2}u_{h}\Big ] \cdot \frac{1}{2}(t-t_{n-1})(t-t_{n})\left( \frac{t-t_{n-1}}{\tau _{n}}\right) ^{2}\nonumber \\&\quad +\Big [3(u_{h}^{n-1})^{2}\partial _{n}^{2}u_{h}-3u_{h}^{n}u_{h}^{n-1}\partial _{n}^{2}u_{h}\Big ] \cdot \frac{1}{2}(t-t_{n-1})(t-t_{n})\left( \frac{t_{n}-t}{\tau _{n}}\right) ^{2}\nonumber \\&\quad +\Big [3u_{h}^{n}u_{h}^{n-1}\partial _{n}^{2}u_{h}--\frac{\frac{(u_{h}^{n})^{3} -(u_{h}^{n-1})^{3}}{\tau _{n}}-\frac{(u_{h}^{n-1})^{3}-(u_{h}^{n-2})^{3}}{\tau _{n-1}}}{\frac{\tau _{n}+\tau _{n-1}}{2}}\Big ]\cdot \frac{1}{2}(t-t_{n-1})(t-t_{n})\nonumber \\&\quad +\Big [\big (3u_{h}^{n}(\partial _{n}^{2}u_{h})^{2}-3u_{h}^{n-1}(\partial _{n}^{2}u_{h})^{2}\big ) \cdot \left( \frac{t-t_{n-1}}{\tau _{n}}\right) +3u_{h}^{n-1}(\partial _{n}^{2}u_{h})^{2}\Big ] \cdot \Big (\frac{1}{2}(t-t_{n-1})(t-t_{n})\Big )^{2}\nonumber \\&\quad +\Big [\Big (\frac{1}{2}(t-t_{n-1})(t-t_{n})\Big )^{3}(\partial _{n}^{2}u_{h})^{3}\Big ] ,e_{u}\Big ) dt \nonumber \\&\le \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| \frac{3(u_{h}^{n})^{2}u_{h}^{n-1}-2(u_{h}^{n})^{3} -(u_{h}^{n-1})^{3}}{\varepsilon }\right\| \cdot \left\| e_{u}\right\| dt\nonumber \\&\quad + \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| \frac{3u_{h}^{n}(u_{h}^{n-1})^{2}-2(u_{h}^{n-1})^{3} -(u_{h}^{n})^{3}}{\varepsilon } \right\| \cdot \left\| e_{u}\right\| dt\nonumber \\&\quad +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| \frac{\big (3(u_{h}^{n})^{2}\partial _{n}^{2}u_{h} -3u_{h}^{n}u_{h}^{n-1}\partial _{n}^{2}u_{h}\big )\tau _{n}^{2}}{8\varepsilon } \right\| \cdot \left\| e_{u}\right\| dt\nonumber \\&\quad +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| \frac{\big (3(u_{h}^{n-1})^{2}\partial _{n}^{2}u_{h} -3u_{h}^{n}u_{h}^{n-1}\partial _{n}^{2}u_{h}\big )\tau _{n}^{2}}{8\varepsilon } \right\| \cdot \left\| e_{u}\right\| dt\nonumber \\&\quad +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left\| \frac{\big (3u_{h}^{n}u_{h}^{n-1}\partial _{n}^{2}u_{h} -\frac{\frac{(u_{h}^{n})^{3}-(u_{h}^{n-1})^{3}}{\tau _{n}}-\frac{(u_{h}^{n-1})^{3} -(u_{h}^{n-2})^{3}}{\tau _{n-1}}}{\frac{\tau _{n} +\tau _{n-1}}{2}}\big )\tau _{n}^{2}}{8\varepsilon } \right\| \cdot \left\| e_{u}\right\| dt\nonumber \\&\quad +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}} \left( \left\| \frac{\big (3u_{h}^{n}(\partial _{n}^{2}u_{h})^{2}-3u_{h}^{n-1} (\partial _{n}^{2}u_{h})^{2}\big )\tau _{n}^{4}}{64\varepsilon } \right\| +\left\| \frac{\big (3u_{h}^{n-1}(\partial _{n}^{2}u_{h})^{2}\big )\tau _{n}^{4}}{64\varepsilon }\right\| \right) \cdot \left\| e_{u}\right\| dt\nonumber \\&\quad +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\left( \left\| \frac{(\partial _{n}^{2}u_{h})^{3}\tau _{n}^{6}}{512\varepsilon } \right\| \right) \cdot \left\| e_{u}\right\| dt\nonumber \\&:= \sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\zeta _{u}^{n}\left\| e_{u}\right\| dt. \end{aligned}$$
(A.35)

Step 9: Grouping together (A.19)–(A.22), (A.26) and (A.27), we have

$$\begin{aligned} \mathcal {B}_{1}+\cdots&+\mathcal {B}_{4}+\mathcal {B}_{6}+\mathcal {B}_{7}\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\gamma _{w}^{n}\left\| \nabla \Delta ^{-1}e_{u}\right\| dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\beta _{u}^{n}\left\| \nabla \Delta ^{-1}e_{u}\right\| dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\delta _{w}^{n}\cdot \left\| \nabla \Delta ^{-1}e_{u}\right\| dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\eta _{w}^{n}\cdot \left\| \nabla \Delta ^{-1}e_{u}\right\| dt\nonumber \\ :=&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\eta _{0}\left\| \nabla \Delta ^{-1}e_{u}\right\| dt\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{2}\eta _{0}^{2}dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{2}\left\| \nabla \Delta ^{-1}e_{u}\right\| ^{2}dt. \end{aligned}$$
(A.36)

Summing up (A.28)–(A.33) and (A.35), it holds that

$$\begin{aligned} \mathcal {B}_{8}+\cdots +\mathcal {B}_{16}\le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\gamma _{u}^{n}\left\| e_{u}\right\| dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\xi _{u}^{n}\left\| e_{u}\right\| dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\beta _{w}^{n}\left\| e_{u}\right\| dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}} \theta _{u}^{n}\cdot \Vert e_{u}\Vert dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\delta _{u}^{n}\cdot \left\| e_{u}\right\| dt\nonumber \\&+\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\alpha _{u}^{n}\left\| e_{u}\right\| dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\zeta _{u}^{n}\left\| e_{u}\right\| dt\nonumber \\ :=&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\eta _{1}\left\| e_{u}\right\| dt\nonumber \\ \le&\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{2\varepsilon ^2}\eta _{1}^{2}dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{\varepsilon ^2}{2}\left\| e_{u}\right\| ^{2}dt. \end{aligned}$$
(A.37)

Step 10: Notice that [4]

$$\begin{aligned} f(a_1)-f(a_2)-f'(a_2)(a_1-a_2)= 3a_2(a_1-a_2)^2+(a_1-a_2)^3, \end{aligned}$$

then

$$\begin{aligned} \left( f(a_1)-f(a_2)-f'(a_2)(a_1-a_2)\right) \left( a_1-a_2\right)&=3a_2(a_1-a_2)^3+(a_1-a_2)^4\nonumber \\&\ge -\tilde{f}(a_2)\mid a_1-a_2\mid ^{3} \end{aligned}$$
(A.38)

with \(\tilde{f}(a_2)=3|a_2|\). Therefore, according to (A.38) and the spectrum estimate [1, 9], we obtain the following estimation for the term \(\mathcal {B}_{17}\)

$$\begin{aligned} \mathcal {B}_{17}=&\int _{0}^{T}\left( \frac{1}{\varepsilon }\left( f(u)-f(u_{h})\right) ,e_{u}\right) dt\nonumber \\ \le&\int _{0}^{T}\left( -\frac{1}{\varepsilon }\left( f'(u_{h})e_{u},e_{u}\right) +\frac{1}{\varepsilon }\left( \tilde{f}(u_{h}),|u-u_{h}|^{3}\right) \right) dt\nonumber \\ \le&\int _{0}^{T}\left( -\frac{1-\varepsilon ^3}{\varepsilon }\left( f'(u_{h})e_{u},e_{u}\right) -\varepsilon ^2\left( f'(u_{h})e_{u},e_{u}\right) +\frac{1}{\varepsilon } \left( \tilde{f}(u_{h}),|u-u_{h}|^{3}\right) \right) dt\nonumber \\ {\le }&\int _{0}^{T}\left( \left( 1{-}\varepsilon ^3\right) \overline{\Lambda }_{h}(t)\Vert \nabla \Delta ^{{-}1} e_{u}\Vert ^{2} {+}\varepsilon \left( 1-\varepsilon ^3\right) \Vert \nabla e_{u}\Vert ^{2}{+}2\varepsilon ^2\Vert e_{u}\Vert ^{2} {+}\frac{1}{\varepsilon }\mu _{g}\Vert e_{u}\Vert _{L^{3}}^{3}\right) dt, \end{aligned}$$
(A.39)

here \(\mu _{g}:=\sup \limits _{t\in (0,T)}\Vert \tilde{f}(u_{h})\Vert _{L^{\infty }(\Omega )}\).

Step 11: Taking (A.25), (A.36) and (A.39) into (A.18), we have

$$\begin{aligned} \frac{1}{2}\Vert \nabla \Delta ^{-1}e_{u}^{N}\Vert ^{2}{+}\int _{0}^{T}\varepsilon \Vert \nabla e_{u}\Vert ^{2}dt&{\le } \frac{1}{2}\Vert \nabla \Delta ^{-1}e_{u}^{0}\Vert ^{2}{+}\sum _{n=1}^{N}2\varepsilon ^{{-}2} \widetilde{\mathcal {E}_{u}^{n}}^{2}{+}\sum _{n=1}^{N}\int _{t_{n{-}1}}^{t_{n}} \frac{\varepsilon ^{4}}{8}\left\| \nabla e_{u}\right\| ^{2}dt\nonumber \\&\quad +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{2}\eta _{0}^{2}dt+\sum _{n=1}^{N} \int _{t_{n-1}}^{t_{n}}\frac{1}{2}\left\| \nabla \Delta ^{-1}e_{u}\right\| ^{2}dt\nonumber \\&\quad +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{1}{2\varepsilon ^2}\eta _{1}^{2}dt +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}\frac{\varepsilon ^2}{2}\left\| e_{u}\right\| ^{2}dt\nonumber \\&\quad +\int _{0}^{T}\left( 1-\varepsilon ^3\right) \overline{\Lambda }_{h}(t)\Vert \nabla \Delta ^{-1}e_{u}\Vert ^{2}dt\nonumber \\&\quad +\sum _{n=1}^{N}\int _{t_{n-1}}^{t_{n}}2\varepsilon ^2\left\| e_{u}\right\| ^{2}dt +\int _{0}^{T}\varepsilon \left( 1-\varepsilon ^3\right) \Vert \nabla e_{u}\Vert ^{2}dt\nonumber \\&\quad +\int _{0}^{T}\frac{1}{\varepsilon }\mu _{g}\Vert e_{u}\Vert _{L^{3}}^{3}dt. \end{aligned}$$
(A.40)

Note that

$$\begin{aligned} \frac{5\varepsilon ^2}{2}\left\| e_{u}\right\| ^{2}&=\frac{5\varepsilon ^2}{2} \left( \nabla (-\Delta ^{-1}e_{u}),\nabla e_{u}\right) \nonumber \\&\le \sqrt{5}\Vert \nabla \Delta ^{-1}e_{u}\Vert \cdot \frac{\sqrt{5}\varepsilon ^2}{2}\Vert \nabla e_{u}\Vert \nonumber \\&\le \frac{5}{2}\Vert \nabla \Delta ^{-1}e_{u}\Vert ^{2}+\frac{5\varepsilon ^{4}{8}}{\Vert }\nabla e_{u}\Vert ^{2}, \end{aligned}$$
(A.41)

plugging (A.41) into (A.40), and further simplification, then we obtain

$$\begin{aligned}&\Vert \nabla \Delta ^{-1}e_{u}^{N}\Vert ^{2}+\int _{0}^{T}\frac{\varepsilon ^{4}}{2}\Vert \nabla e_{u}\Vert ^{2}dt \nonumber \\&\quad \le \Vert \nabla \Delta ^{-1}e_{u}^{0}\Vert ^{2}+\sum _{n=1}^{N}4\varepsilon ^{-2} \widetilde{\mathcal {E}_{u}^{n}}^{2}+\sum _{n=1}^{N}\left( \eta _{0}^{2} +\varepsilon ^{-2}\eta _{1}^{2}\right) \tau _{n}\nonumber \\&\qquad +\int _{0}^{T}\left( 6+2\left( 1-\varepsilon ^3\right) \overline{\Lambda }_{h}(t)\right) \Vert \nabla \Delta ^{-1}e_{u}\Vert ^{2}dt\nonumber \\&\qquad +\int _{0}^{T}\frac{2}{\varepsilon }\mu _{g}\Vert e_{u}\Vert _{L^{3}}^{3}dt. \end{aligned}$$
(A.42)

Let

$$\begin{aligned} y_{1}(t)&:=\Vert \nabla \Delta ^{-1}e_{u}\Vert ^{2}, \qquad y_{2}(t):=\frac{\varepsilon ^{4}}{2}\Vert \nabla e_{u}\Vert ^{2},\qquad y_{3}(t):=2\varepsilon ^{-1}\mu _{g}\Vert e_{u}\Vert _{L^{3}}^{3},\\ \eta ^2&:=\Vert \nabla \Delta ^{-1}e_{u}^{0}\Vert ^{2}+\sum _{n=1}^{N}4\varepsilon ^{-2} \widetilde{\mathcal {E}_{u}^{n}}^{2}+\sum _{n=1}^{N}\left( \eta _{0}^{2}+\varepsilon ^{-2}\eta _{1}^{2}\right) \tau _{n}. \end{aligned}$$

According to Lemma A.1 and assume that \(\Vert e_{u}\Vert _{L^{\infty }}\le C\), it holds that

$$\begin{aligned} \int _{0}^{T}2\varepsilon ^{-1}\mu _{g}\Vert e_{u}\Vert _{L^{3}}^{3}dt&\le \int _{0}^{T}2\varepsilon ^{-1} \mu _{g}C_{I}\Vert e_{u}\Vert _{L^{\infty }(\Omega )}^{1-\sigma }\Vert \nabla \Delta ^{-1}e_{u}\Vert ^{\sigma }\Vert \nabla e_{u}\Vert ^{2}dt\\&\le \int _{0}^{T}2\varepsilon ^{-1}\mu _{g}C_{I}\Vert e_{u}\Vert _{L^{\infty } (\Omega )}^{1-\sigma }\Vert \nabla \Delta ^{-1}e_{u}\Vert ^{\sigma }\Vert \nabla e_{u}\Vert ^{2}dt\\&\le 2\varepsilon ^{-1}\mu _{g}C_{S}\left( \sup _{t\in (0,T)}\Vert \nabla \Delta ^{-1}e_{u}\Vert ^{\sigma }\right) \int _{0}^{T}\Vert \nabla e_{u}\Vert ^{2}dt\\&\le B\left( \sup _{t\in (0,T)}\Vert \nabla \Delta ^{-1}e_{u}\Vert ^{\sigma }\right) \int _{0}^{T}\left( \Vert \nabla e_{u}\Vert ^{2}+ \Vert \nabla \Delta ^{-1}e_{u}\Vert ^{2}\right) dt, \end{aligned}$$

with \(B:=2\varepsilon ^{-1}\mu _{g}C_{S}\). Setting

$$\begin{aligned} E:=\exp \left( \int _{0}^{T}a(t)dt\right) ,\qquad \qquad \beta :=\sigma ,\qquad \qquad A=\eta ^2, \end{aligned}$$

and based on the assumption on A shown in Lemma A.2, we have

$$\begin{aligned} \eta ^{2}\le \frac{\varepsilon ^{1/\sigma }}{(2\mu _{g}C_{S}(1+T))^{1/\sigma }} \left( 8\exp \left( \int _{0}^{T}a(t)dt\right) \right) ^{-1-\frac{1}{\sigma }}. \end{aligned}$$

Therefore, by using Lemma A.2, we obtain

$$\begin{aligned} \sup _{t\in [0,T]}\Vert \nabla \Delta ^{-1}e_{u}\Vert ^{2}+\int _{0}^{T} \frac{\varepsilon ^{4}}{2}\Vert \nabla e_{u}\Vert ^{2}dt\le 8\eta ^{2}\exp \left( \int _{0}^{T}a(t)dt\right) . \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Huang, Y., Yi, N. et al. Recovery Type a Posteriori Error Estimation of an Adaptive Finite Element Method for Cahn–Hilliard Equation. J Sci Comput 98, 35 (2024). https://doi.org/10.1007/s10915-023-02418-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02418-9

Keywords

Mathematics Subject Classification

Navigation