Skip to main content
Log in

Fast Non-overlapping Domain Decomposition Methods for Continuous Multi-phase Labeling Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents the domain decomposition methods (DDMs) for achieving fast parallel computing on multi-core computers when dealing with the multi-phase labeling problem. To handle the non-smooth multi-phase labeling model, we introduce a quadratic proximal term, resulting in a strongly convex model. This paper provides theoretical evidence supporting the convergence of the proposed non-overlapping DDMs. Specifically, it is demonstrated that the non-overlapping DDMs for the non-smooth labeling model exhibits an O(1/n) convergence rate of the energy functional, where n is the number of iterations. Moreover, the fast iterative shrinkage-thresholding algorithm (Beck and Teboulle in SIAM J Imaging Sci 2(1):183–202, 2009) is applied to achieve an \(O(1/n^2)\) convergence rate. Numerical experiments are evaluated to demonstrate the convergence and efficiency of the proposed DDMs in solving multi-phase labeling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Algorithm 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility

The datasets generated during and/or analysed during the current study are available corresponding author on reasonable request.

References

  1. Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continuous multi-phase partitioning problems using a dual approach. Int. J. Comput. Vision 92(1), 112–129 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Bonnet, N., Cutrona, J., Herbin, M.: A ‘no-threshold’ histogram-based image segmentation method. Pattern Recogn. 35(10), 2319–2322 (2002)

    MATH  Google Scholar 

  4. Bredies, K., Sun, H.: Preconditioned Douglas–Rachford splitting methods for convex-concave saddle-point problems. SIAM J. Numer. Anal. 53(1), 421–444 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Chang, H., Tai, X.-C., Wang, L.-L., Yang, D.: Convergence rate of overlapping domain decomposition methods for the Rudin–Osher–Fatemi model based on a dual formulation. SIAM J. Imag. Sci. 8(1), 564–591 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155(1–2), 57–79 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Duan, Y., Chang, H., Tai, X.-C.: Convergent non-overlapping domain decomposition methods for variational image segmentation. J. Sci. Comput. 69(2), 532–555 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Fornasier, M., Langer, A., Schönlieb, C.-B.: A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116(4), 645–685 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Fornasier, M., Schönlieb, C.-B.: Subspace correction methods for total variation and \(l_1\) minimization. SIAM J. Numer. Anal. 47(5), 3397–3428 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Gaul, A.: Domain decomposition method for a finite element algorithm for image segmentation. PhD thesis, Diploma thesis, Chair of Applied Mathematics III, Department of Mathematics

  11. Gu, Y., Wang, L.-L., Tai, X.-C.: A direct approach toward global minimization for multi-phase labeling and segmentation problems. IEEE Trans. Image Process. 21(5), 2399–2411 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Gu, Y., Xiong, W., Wang, L.-L., Cheng, J.: Generalizing mumford-shah model for multiphase piecewise smooth image segmentation. IEEE Trans. Image Process. 26(2), 942–952 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Guo, X., Junjie, H., Chen, J., Deng, F., Lam, T.L.: Semantic histogram based graph matching for real-time multi-robot global localization in large scale environment. IEEE Robot. Automat. Lett. 6(4), 8349–8356 (2021)

    Google Scholar 

  14. Hintermüller, M., Langer, A.: Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L1/L2 data-fidelity in image processing. SIAM J. Imag. Sci. 6(4), 2134–2173 (2013)

    MATH  Google Scholar 

  15. Hintermüller, M., Langer, A.: Non-overlapping domain decomposition methods for dual total variation based image denoising. J. Sci. Comput. 62(2), 456–481 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Langer, A.: Domain decomposition for non-smooth (in particular TV) minimization, pp. 1–47 (2021)

  17. Langer, A., Gaspoz, F.: Overlapping domain decomposition methods for total variation denoising. SIAM J. Numer. Anal. 57(3), 1411–1444 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Langer, A., Osher, S., Schönlieb, C.-B.: Bregmanized domain decomposition for image restoration. J. Sci. Comput. 54(2), 549–576 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Lee, C.O., Lee, J.H., Woo, H., Yun, S.: Block decomposition methods for total variation by primal dual stitching. J. Sci. Comput. 68(1), 273–302 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Lee, C.-O., Nam, C.: Primal domain decomposition methods for the total variation minimization, based on dual decomposition. SIAM J. Sci. Comput. 39(2), B403–B423 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Lee, C.-O., Nam, C., Park, J.: Domain decomposition methods using dual conversion for the total variation minimization with L1 fidelity term. J. Sci. Comput. 78(2), 951–970 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Lee, C.-O., Park, J.: Fast nonoverlapping block Jacobi method for the dual Rudin–Osher–Fatemi model. SIAM J. Imag. Sci. 12(4), 2009–2034 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Lee, C.-O., Park, J.: A finite element nonoverlapping domain decomposition method with Lagrange multipliers for the dual total variation minimizations. J. Sci. Comput. 81(3), 2331–2355 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Lee, C.-O., Park, J.: Recent advances in domain decomposition methods for total variation minimization. J. Kor. Soc. Ind. Appl. Math. 24(2), 161–197 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Li, X., Zhang, Z., Chang, H., Duan, Y.: Accelerated non-overlapping domain decomposition method for total variation minimization. Numer. Math.: Theory Methods Appl. 14(4), 116–119 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Liu, J., Tai, X., Leung, S., Huang, H.: A new continuous max-flow algorithm for multiphase image segmentation using super-level set functions. J. Vis. Commun. Image Represent. 25(6), 1472–1488 (2014)

    Google Scholar 

  27. Mignotte, M.: Segmentation by fusion of histogram-based K means clusters in different color spaces. IEEE Trans. Image Process. 17(5), 780–787 (2008)

    MathSciNet  Google Scholar 

  28. Minaee, S., Boykov, Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3523–3542 (2021)

    Google Scholar 

  29. Mumford, D.B., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. (1989)

  30. Park, J.: An overlapping domain decomposition framework without dual formulation for variational imaging problems. Adv. Comput. Math. 46(4), 1–29 (2020)

    MathSciNet  Google Scholar 

  31. Park, J.: Accelerated additive Schwarz methods for convex optimization with adaptive restart. J. Sci. Comput. 89(3), 1–20 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Park, J.: Additive Schwarz methods for convex optimization with backtracking. Comput. Math. Appl. 113, 332–344 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Potts, R.B.: Some generalized order-disorder transformations, vol. 48, pp. 106–109. Cambridge University Press (1952)

  34. Shu, X., Yang, Y., Boying, W.: A neighbor level set framework minimized with the split Bregman method for medical image segmentation. Signal Process. 189, 108–193 (2021)

    Google Scholar 

  35. Sun, H., Peng Kristian, B.: Preconditioned Douglas–Rachford algorithms for TV- and TGV-regularized variational imaging problems. J. Math. Imaging Vis. 52(3), 317–344 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Sun, H.: Analysis of fully preconditioned alternating direction method of multipliers with relaxation in Hilbert spaces. J. Optim. Theory Appl. 183(1), 199–229 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Sun, H., Tai, X.-C., Yuan, J.: Efficient and convergent preconditioned ADMM for the potts models. SIAM J. Sci. Comput. 43(2), B455–B478 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Tai, X.-C., Deng, L.-J., Yin, K.: A multigrid algorithm for Max-flow and Min-cut problems with applications to multiphase image segmentation. J. Sci. Comput. 87(3), 1–22 (2021)

    Google Scholar 

  39. Tai, X.-C., Espedal, M.: Applications of a space decomposition method to linear and nonlinear elliptic problems. Numer. Methods Part. Differ. Equ.: Int. J. 14(6), 717–737 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Tai, X.-C., Jinchao, X.: Global and uniform convergence of subspace correction methods for some convex optimization problems. Math. Comput. 71(237), 105–124 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Tian, K., Li, J., Zeng, J., Evans, A., Zhang, L.: Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm. Comput. Electron. Agric. 165, 104–112 (2019)

    Google Scholar 

  42. Tobias, O.J., Seara, R.: Image segmentation by histogram thresholding using fuzzy sets. IEEE Trans. Image Process. 11(12), 1457–1465 (2002)

    Google Scholar 

  43. Wang, D., Li, H., Wei, X., Wang, X.-P.: An efficient iterative thresholding method for image segmentation. J. Comput. Phys. 350, 657–667 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Wei, K., Tai, X., Chan, T., Leung, S.: Primal-dual method for continuous max-flow approaches. In Proceedings of 5th ECCOMAS Conference on Computational Vision and Medical Image Processing, 17–24 (2016)

  45. Yan, Z., Yang, X., Cheng, K.-T.: A three-stage deep learning model for accurate retinal vessel segmentation. IEEE J. Biomed. Health Inform. 23(4), 1427–1436 (2018)

    Google Scholar 

  46. Yuan, J., Bae, E., Tai, X.-C.: A study on continuous max-flow and min-cut approaches. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2217–2224. IEEE (2010)

  47. Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In European Conference on Computer Vision, pp. 379–392. Springer (2010)

  48. Zach, C., Gallup, D., Frahm, J.-M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In Vision, Modeling and Visualization Workshop (VMV), pp. 243–252 (2008)

  49. Zeune, L., van Dalum, G., Terstappen, L.W.M.M., van Gils, S.A., Brune, C.: Multiscale segmentation via Bregman distances and nonlinear spectral analysis. SIAM J. Imag. Sci. 10(1), 111–146 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, Z., Chen, K., Tang, K., Duan, Y.: Fast multi-grid methods for minimizing curvature energies. IEEE Trans. Image Process. 32, 1716–1731 (2023)

    Google Scholar 

  51. Zhang, Z., Li, X., Duan, Y., Yin, K., Tai, X.-C.: An efficient multi-grid method for TV minimization problems. Inverse Problems Imaging 15(5), 125–138 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for providing us with numerous valuable suggestions to revise the paper.

Funding

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 12071345 and Grant 11701418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Duan.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Now we introduce the relaxed preconditioned splitting method of Douglas Rachford type (PDRQ) [4, 36, 37] for solving the following primal-dual convex optimization problem

$$\begin{aligned} \min _{x\in X}\max _{y\in Y} G_1(x)+\langle Kx,y \rangle -G_2(y), \end{aligned}$$
(26)

where \(G_1(x)=\langle \frac{1}{2} Qx+f,x\rangle \) and Q is linear, continuous, and positive semidefinite. Here, X and Y are real Hilbert spaces, and \(K: X\rightarrow Y\) is a continuous linear mapping. The functionals \(G_1: X\rightarrow {\textbf{R}}_\infty \) (where \({\textbf{R}}_\infty \) are extended real numbers) and \(G_2: Y\rightarrow {\textbf{R}}_\infty \) are proper, convex, and lower semicontinuous.

The optimality system for (26) is given as \(0\in A_1z+B_1z\) for \(z=(x,y)^T\), \(z\in H=X\times Y\), where \(A_1\) and \(B_1\) are provided that

$$\begin{aligned}A_1=\begin{pmatrix} \begin{array}{ll} 0 &{} 0 \\ 0&{} \partial G_2 \end{array} \end{pmatrix},~ B_1=\begin{pmatrix} \begin{array}{ll} Q+1_f&{} K^* \\ -K&{} 0 \end{array} \end{pmatrix}. \end{aligned}$$

Here, \(1_f\) denotes the constant mapping which yields f for each argument. By setting \(\sigma >0\) and introducing an auxiliary variable \(w\in H\) with \(w\in \sigma A_1z\), the optimality system can be equivalently written as

$$\begin{aligned} \begin{pmatrix} \begin{array}{l} 0 \\ 0 \end{array} \end{pmatrix}\in \begin{pmatrix} \begin{array}{l} \sigma B_1z +w\\ -z+(\sigma A_1)^{-1}w \end{array} \end{pmatrix}. \end{aligned}$$

Let \({\mathcal {U}}\in H\times H\), \(u=(z,w)\) and \({\mathcal {A}}:{\mathcal {U}}\rightarrow 2^{\mathcal {U}}\). Then this problem becomes \(0\in {\mathcal {A}} u\). By introducing a linear and continuous preconditioner \({\mathcal {M}}:{\mathcal {U}}\rightarrow {\mathcal {U}}\), the latter results in the iteration becomes

$$\begin{aligned} 0\in {\mathcal {M}}(u^{m+1}-u^m)+{\mathcal {A}}u^{m+1} \end{aligned}$$

with

$$\begin{aligned} {\mathcal {M}}=\begin{pmatrix} \begin{array}{ll} I &{} -I \\ -I&{} I \end{array} \end{pmatrix},~ {\mathcal {A}}=\begin{pmatrix} \begin{array}{ll} \sigma B_1 &{} I \\ -I&{} (\sigma A_1)^{-1} \end{array} \end{pmatrix}. \end{aligned}$$

Therefore, the iteration can be defined as follows

$$\begin{aligned} \left\{ \begin{aligned} z^{m+1}&=(I+\sigma B_1)^{-1}(z^m-w^m);\\ v^{m+1}&=v^m+(I+\sigma A_1)^{-1}(2z^{m+1}-v^m)-z^{m+1}; \end{aligned}\right. \end{aligned}$$

where \(v^{m}:=z^{m}-w^m\). Hence this iteration becomes the Douglas-Rachford iteration.

In [36, 37], the preconditioner \({\mathcal {M}}\) can be defined more flexibility. By introducing the operator as follows

$$\begin{aligned} N_1: X\rightarrow X,~\text{ linear, } \text{ continuous, } \text{ self-adjoint } \text{ and }~N_1-I\ge 0, \end{aligned}$$

we define \({\mathcal {M}}:{\mathcal {U}}\rightarrow {\mathcal {U}}\) according to

$$\begin{aligned}{\mathcal {M}}:=\begin{pmatrix} \begin{array}{llll} N_1 &{} 0&{}-I&{}0 \\ 0 &{} I&{}0 &{}-I \\ -I &{} 0&{}I&{}0 \\ 0 &{} -I&{}0&{}I \\ \end{array} \end{pmatrix}, \end{aligned}$$

and \(w=\sigma Az=(0,\tilde{y} )\) with \(\tilde{y} \in \sigma \partial G_2(y)\). By introducing \(\bar{y}^m=y^m-\tilde{y}^m\), the preconditioned splitting method of Douglas Rachford can be formulated as follows

$$\begin{aligned} \left\{ \begin{aligned} x^{m+1}&=(N_1+\sigma Q)^{-1}(N_1 x^m-\sigma K^*y^{m+1}-\sigma f);\\ y^{m+1}&=\bar{y}^m+\sigma K x^{m+1}\\ \bar{y}^{m+1}&=\bar{y}^{m}+(I+\sigma \partial G_2)^{-1}(2y^{m+1}-\bar{y}^m)-y^{m+1}; \end{aligned}\right. \end{aligned}$$
(27)

Note that the updates w.r.t. \(x^{m+1}\) and \(y^{m+1}\) are implicit. One possibility is to compute \(x^{m+1}\) by plugging \(y^{m+1}\) to obtain

$$\begin{aligned} (N_1+\sigma Q+\sigma ^2 K^*K)x^{m+1}= N_1 x^m -\sigma K^*\bar{y}^{m}-\sigma f. \end{aligned}$$

Let \(M_Q\) be a positive definite operator such that

$$\begin{aligned} N_1=M_Q-\sigma Q-\sigma ^2 K^*K. \end{aligned}$$

Then we have

$$\begin{aligned} x^{m+1}=x^m+M_Q^{-1}[-\sigma f -\sigma K^*\bar{y}^{m}-T_Q x^m], \end{aligned}$$

with \(T_Q=\sigma Q+\sigma ^2 K^*K\).

By combining the second and third equations of (27), the relaxed iteration (27) can be written as

$$\begin{aligned} \left\{ \begin{aligned} x^{m+1}&=x^m+M_Q^{-1}[\sigma f-\sigma K^*\bar{y}^m-T_Qx^m];\\ \bar{y}^{m+1}&=(1-\rho ) \bar{y}^{m} + \rho (I+\tau \partial G_2)^{-1}(2\bar{y}^{m}+2\sigma K x^{m+1})-\rho \tau K x^{m+1}, \end{aligned}\right. \end{aligned}$$
(28)

with \(T_Q=\sigma Q+\sigma \tau K^*K\) for \(\tau >0\). The convergence of PDRQ for the case \(\rho \in (0,2)\) can be guaranteed; see [36, 37] for more details.

Theorem 4

If a solution to the saddle point problem (26) exists, then the iteration (28) converges weakly to a fixed point \((x^*,y^*)\). The pair \((x^*,y^*)\) is a solution to the saddle-point problem.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chang, H. & Duan, Y. Fast Non-overlapping Domain Decomposition Methods for Continuous Multi-phase Labeling Problem. J Sci Comput 97, 67 (2023). https://doi.org/10.1007/s10915-023-02382-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02382-4

Keywords

Navigation