Skip to main content
Log in

Entropy Stable Schemes for the Shear Shallow Water Model Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The shear shallow water model is an extension of the classical shallow water model to include the effects of vertical shear. It is a system of six non-linear hyperbolic PDE with non-conservative products. We develop a high-order entropy stable finite difference scheme for this model in one dimension and extend it to two dimensions on rectangular grids. The key idea is to rewrite the system so that non-conservative terms do not contribute to the entropy evolution. Then, we first develop an entropy conservative scheme for the conservative part, which is then extended to the complete system using the fact that the non-conservative terms do not contribute to the entropy production. The entropy dissipative scheme, which leads to an entropy inequality, is then obtained by carefully adding dissipative flux terms. The proposed schemes are then tested on several one and two-dimensional problems to demonstrate their stability and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229(8), 2759–2763 (2010). https://doi.org/10.1016/j.jcp.2009.12.015

    Article  MathSciNet  MATH  Google Scholar 

  2. Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, pp. 195–285. Springer, Berlin (1999)

    Chapter  Google Scholar 

  3. Berthon, C.: Numerical approximations of the 10-moment Gaussian closure. Math. Comput. 75(256), 1809–1831 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berthon, C., Dubroca, B., Sangam, A.: An entropy preserving relaxation scheme for ten-moments equations with source terms. Commun. Math. Sci. 13(8), 2119–2154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhole, A., Nkonga, B., Gavrilyuk, S., Ivanova, K.: Fluctuation splitting Riemann solver for a non-conservative modeling of shear shallow water flow. J. Comput. Phys. 392, 205–226 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biswas, B., Kumar, H., Yadav, A.: Entropy stable discontinuous Galerkin methods for ten-moment Gaussian closure equations. J. Comput. Phys. 431, 110148 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brock, R.R.: Development of roll-wave trains in open channels. J. Hydraul. Div. 95(4), 1401–1427 (1969)

    Article  Google Scholar 

  8. Brock, R.R.: Periodic permanent roll waves. J. Hydraul. Div. 96(12), 2565–2580 (1970)

    Article  Google Scholar 

  9. Busto, S., Dumbser, M., Gavrilyuk, S., Ivanova, K.: On thermodynamically compatible finite volume methods and path-conservative ADER discontinuous Galerkin schemes for turbulent shallow water flows. J. Sci. Comput. 88(1), 28 (2021). https://doi.org/10.1007/s10915-021-01521-z

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, M.J., Fjordholm, U.S., Mishra, S., Parés, C.: Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems. SIAM J. Numer. Anal. 51(3), 1371–1391 (2013). https://doi.org/10.1137/110845379

    Article  MathSciNet  MATH  Google Scholar 

  11. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chandrashekar, P., Nkonga, B., Meena, A.K., Bhole, A.: A path conservative finite volume method for a shear shallow water model. J. Comput. Phys. 413, 109457 (2020). https://doi.org/10.1016/j.jcp.2020.109457

    Article  MathSciNet  MATH  Google Scholar 

  13. Elling, V.: The carbuncle phenomenon is incurable. Acta Math. Sci. 29(6), 1647–1656 (2009). https://doi.org/10.1016/S0252-9602(10)60007-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13(2), 139–159 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gavrilyuk, S., Ivanova, K., Favrie, N.: Multi-dimensional shear shallow water flows: problems and solutions. J. Comput. Phys. 366, 252–280 (2018). https://doi.org/10.1016/j.jcp.2018.04.011

    Article  MathSciNet  MATH  Google Scholar 

  17. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0713-9

    Book  MATH  Google Scholar 

  18. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol. 118. Springer, Berlin (1996)

    MATH  Google Scholar 

  19. Godunov, S.K.: An interesting class of quasilinear systems. In: Doklady Akademii Nauk SSSR, vol. 139, pp. 521–523 (1961)

  20. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49(1), 151–164 (1983). https://doi.org/10.1016/0021-9991(83)90118-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ivanova, K., Gavrilyuk, S., Nkonga, B., Richard, G.: Formation and coarsening of roll-waves in shear shallow water flows down an inclined rectangular channel. Comput. Fluids 159, 189–203 (2017). https://doi.org/10.1016/j.compfluid.2017.10.004

    Article  MathSciNet  MATH  Google Scholar 

  24. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia (1973)

    Book  MATH  Google Scholar 

  25. Lefloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Levermore, C.D., Morokoff, W.J.: The Gaussian moment closure for gas dynamics. SIAM J. Appl. Math. 59(1), 72–96 (1998). https://doi.org/10.1137/S0036139996299236

    Article  MathSciNet  MATH  Google Scholar 

  27. Mock, M.S.: Systems of conservation laws of mixed type. J. Differ. Equ. 37(1), 70–88 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nkonga, B., Chandrashekar, P.: Exact solution for Riemann problems of the shear shallow water model. ESAIM Math. Model. Numer. Anal. 56(4), 1115–1150 (2022). https://doi.org/10.1051/m2an/2022032

    Article  MathSciNet  MATH  Google Scholar 

  29. Richard, G.L., Gavrilyuk, S.L.: The classical hydraulic jump in a model of shear shallow-water flows. J. Fluid Mech. 725, 492–521 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sen, C., Kumar, H.: Entropy stable schemes for ten-moment Gaussian closure equations. J. Sci. Comput. 75(2), 1128–1155 (2018). https://doi.org/10.1007/s10915-017-0579-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156

    Article  MathSciNet  MATH  Google Scholar 

  33. Teshukov, V.M.: Gas-dynamic analogy for vortex free-boundary flows. J. Appl. Mech. Tech. Phys. 48(3), 303–309 (2007). https://doi.org/10.1007/s10808-007-0039-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Praveen Chandrashekar is supported by the Department of Atomic Energy, Government of India, under project no. 12-R &D-TFR-5.01-0520. The work of Harish Kumar is supported in parts by DST-SERB, MATRICS grant with file No. MTR/2019/000380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A A Note on Non-symmetrizability of Shear Shallow Water Model

In this section, we will discuss the symmetrizability of the following SSW model in one dimension, i.e., we consider,

$$\begin{aligned} \frac{\partial \varvec{U}}{\partial t}+\frac{\partial \varvec{F}^x(\varvec{U})}{\partial x}+{\tilde{\varvec{B}^x}}(\varvec{U})\frac{\partial \varvec{U}}{\partial x}=0, \end{aligned}$$
(22)

where \(\varvec{U}, \varvec{F}^x\) and \({\tilde{\varvec{B}^x}}\) are defined in Sect. 3. Additionally, this system has the entropy pair \((\eta ,q)\) (2), such that in addition to (1) the following equality holds,

$$\begin{aligned} \frac{\partial \eta }{\partial t}+\frac{\partial q}{\partial x}=0. \end{aligned}$$

for smooth solutions. For detailed proof, refer to Lemma 1. In the standard symmetrization theory [19, 21, 24, 27], one seeks a change of variable \(\textbf{U} \rightarrow \mathbf {\varvec{V}}\) applied to (22) so that when transformed

$$\begin{aligned} \frac{\partial \textbf{U}}{\partial \varvec{V}}\frac{\partial \varvec{V}}{\partial t}+\bigg (\frac{\partial \varvec{F}^x}{\partial \textbf{U}}+{\tilde{\varvec{B}^x}}\bigg )\frac{\partial \textbf{U}}{\partial \varvec{V}}\frac{\partial \varvec{V}}{\partial x}=0, \end{aligned}$$

the matrix \(\frac{\partial \textbf{U}}{\partial \varvec{V}}\) is symmetric, positive definite and the matrix \({\tilde{A}}_1 = \bigg (\frac{\partial \varvec{F}^x}{\partial \textbf{U}}+{\tilde{\varvec{B}^x}}\bigg )\frac{\partial \textbf{U}}{\partial \varvec{V}}\) is symmetric. For the SSW system (22), we calculate the matrix \({\tilde{A}}_1\) to check it’s symmetry, which yields

$$\begin{aligned} {\tilde{A}}_1 - {\tilde{A}}_1^\top = \begin{pmatrix} 0 &{} -\alpha &{} 0 &{} -\alpha v_1 &{} -\frac{1}{2} \alpha v_2 &{} 0 \\ \alpha &{} 0 &{} \alpha v_2 &{} -\beta _1 &{} \frac{1}{2} \alpha \mathcal {P}_{12} &{} \beta _2 \\ 0 &{} -\alpha v_2 &{} 0 &{} -\alpha v_1 v_2 &{} -\frac{1}{2} \alpha v_2^2 &{} 0 \\ \alpha v_1 &{} \beta _1 &{} \alpha v_1 v_2 &{} 0 &{} a &{} v_1 \beta _2 \\ \frac{1}{2}\alpha v_2 &{} -\frac{1}{2} \alpha \mathcal {P}_{12} &{} \frac{1}{2} \alpha v_2^2 &{} -a &{} 0 &{} \frac{1}{2}v_2 \beta _2\\ 0 &{} -\beta _2 &{} 0 &{} -\beta _2 &{} -\frac{1}{2} v_2 \beta _2 &{} 0 \end{pmatrix}. \end{aligned}$$

where

$$\begin{aligned} \alpha= & {} \frac{gh^2}{2}, \quad \beta _1=\frac{1}{4} g h^2 \left( v_1^2-\mathcal {P}_{11}\right) ,\quad \beta _2=\frac{1}{4} g h^2 \left( v_2^2+\mathcal {P}_{22}\right) \\ a= & {} \frac{1}{8} g h^2 \left( 2 \mathcal {P}_{12} v_1+\left( v_1^2-\mathcal {P}_{11}\right) v_2\right) \end{aligned}$$

Hence, \({\tilde{A}}_1\) is not a symmetric matrix unless \(g=0\), in which case the non-conservative terms vanish from the SSW model. Furthermore, we recall the following result presented in [18] which gives the necessary and sufficient condition for a non-linear system of conservation laws to admit a strictly convex entropy.

Theorem 3

A necessary and sufficient condition for the conservative system,

$$\begin{aligned} \frac{\partial \varvec{U}}{\partial t} + \frac{\partial \varvec{F}^x}{\partial x}=0, \end{aligned}$$
(23)

to posses a strictly convex entropy \(\eta \) is that there exists a change of dependent variables \(\varvec{U}=\varvec{U}(\varvec{V})\) that symmetrizes (23).

Analogously, we extend the above result for the case of non-conservative hyperbolic systems of the form (22).

Proposition 2

If \(\eta \) is a strictly convex entropy for the non-conservative system of the form (22) and \(\eta {'}(\varvec{U}){\tilde{\varvec{B}^x}}(\varvec{U})=0\), then the change of variable \(\varvec{U}\rightarrow \varvec{V}\) with \(\varvec{V}^\top = \eta {'}(\varvec{U})\) symmetrizes the non-conservative system if and only if \({\tilde{\varvec{B}^x}}(\varvec{U})\varvec{U}{'}(\varvec{V})\) is symmetric.

Proof

Define the conjugate functions

$$\begin{aligned} \eta ^{*}(\varvec{V})=\varvec{V}^\top \varvec{U}(\varvec{V})-\eta (\varvec{U}(\varvec{V})), \qquad q^{*}(\varvec{V})=\varvec{V}^\top \varvec{F}(\varvec{U}(\varvec{V}))-q(\varvec{U}(\varvec{V})). \end{aligned}$$

Differentiating with respect to \(\varvec{V}\) gives,

$$\begin{aligned} {\eta ^{*}}^{'}(\varvec{V})=\varvec{U}(\varvec{V})^\top -\varvec{V}^\top \varvec{U}'(\varvec{V})-\eta '(\varvec{U}(\varvec{V}))\varvec{U}'(\varvec{V})=\varvec{U}(\varvec{V})^\top , \end{aligned}$$

and

$$\begin{aligned} {q^{*}}^{'}(\varvec{V})&=\varvec{F}(\varvec{U}(\varvec{V}))^\top +\varvec{V}^\top \varvec{F}'(\varvec{U}(\varvec{V}))\varvec{U}'(\varvec{V})-q'(\varvec{U}(\varvec{V}))\varvec{U}'(\varvec{V})&\\&=\varvec{F}(\varvec{U}(\varvec{V}))^\top +[\varvec{V}^\top \varvec{F}'(\varvec{U}(\varvec{V}))-q'(\varvec{U}(\varvec{V}))]\varvec{U}'(\varvec{V})&\\&=\varvec{F}(\varvec{U}(\varvec{V}))^\top \end{aligned}$$

since,

$$\begin{aligned} \varvec{V}^\top \varvec{F}'(\varvec{U}(\varvec{V}))-q'(\varvec{U}(\varvec{V}))=0. \end{aligned}$$

Hence, the matrices \(\varvec{U}'(\varvec{V})={\eta ^{*}}^{''}(\varvec{V})\) and \(\varvec{F}'(\varvec{U}(\varvec{V}))\varvec{U}'(\varvec{V})={q^{*}}^{''}(\varvec{V})\) are symmetric. Moreover, the matrix \(\varvec{U}'(\varvec{V})=\eta {''}(\varvec{U}(\varvec{V}))^{-1}\) is positive definite.

The change of variable yields

$$\begin{aligned} \varvec{U}'(\varvec{V})\varvec{V}_t+[\varvec{F}'(\varvec{U}(\varvec{V})) + {\tilde{\varvec{B}^x}}(\varvec{U}(\varvec{V}))]\varvec{U}'(\varvec{V})\varvec{V}_x=0 \end{aligned}$$

We need \([\varvec{F}'(\varvec{U}(\varvec{V}))+{\tilde{\varvec{B}^x}}(\varvec{U}(\varvec{V}))]\varvec{U}'(\varvec{V})\) to be symmetric, since, \(\varvec{F}'(\varvec{U}(\varvec{V}))\varvec{U}'(\varvec{V})\) is symmetric we need \({\tilde{\varvec{B}^x}}(\varvec{U}(\varvec{V}))\varvec{U}'(\varvec{V})\) to be symmetric. \(\square \)

Remark 3

The matrix \({\tilde{\varvec{B}^x}}(\varvec{U}(\varvec{V}))\varvec{U}'(\varvec{V})\) for system (1) is not symmetric, since,

$$\begin{aligned} {\tilde{\varvec{B}^x}}(\textbf{U}({\textbf {V}}))\textbf{U}'({\textbf {V}}) - \left[ {\tilde{\varvec{B}^x}}(\textbf{U}({\textbf {V}}))\textbf{U}'({\textbf {V}}) \right] ^\top = \begin{pmatrix} 0 &{} -\alpha &{} 0 &{} -\alpha v_1 &{} -\frac{1}{2} \alpha v_2 &{} 0 \\ \alpha &{} 0 &{} \alpha v_2 &{} -\beta _1 &{} \frac{1}{2} \alpha \mathcal {P}_{12} &{} \beta _2 \\ 0 &{} -\alpha v_2 &{} 0 &{} -\alpha v_1 v_2 &{} -\frac{1}{2} \alpha v_2^2 &{} 0 \\ \alpha v_1 &{} \beta _1 &{} \alpha v_1 v_2 &{} 0 &{} a &{} v_1 \beta _2 \\ \frac{1}{2}\alpha v_2 &{} -\frac{1}{2} \alpha \mathcal {P}_{12} &{} \frac{1}{2} \alpha v_2^2 &{} -a &{} 0 &{} \frac{1}{2}v_2 \beta _2\\ 0 &{} -\beta _2 &{} 0 &{} -\beta _2 &{} -\frac{1}{2} v_2 \beta _2 &{} 0 \end{pmatrix}, \end{aligned}$$

where \(\alpha =\frac{gh^2}{2},~\beta _1=\frac{1}{4} g h^2 \left( v_1^2-\mathcal {P}_{11}\right) ,~\beta _2=\frac{1}{4} g h^2 \left( v_2^2+\mathcal {P}_{22}\right) ,\)

\(a=\frac{1}{8} g h^2 \left( 2 \mathcal {P}_{12} v_1+\left( v_1^2-\mathcal {P}_{11}\right) v_2\right) \).

The above matrix is identical to \({\tilde{A}}_1 - {\tilde{A}}_1^\top \) which we derived explicitly and shown above.

From the above discussion, we observe that the existence of entropy pair does not guarantee the symmetrizability of the non-conservative hyperbolic systems. In particular, we have seen that the shear shallow water model has the entropy pair \((\eta ,q)\) but it is not symmetrizable.

B Entropy Scaled Right Eigenvectors for Shear Shallow Water Model

In this section, we will calculate the entropy scaled right eigenvectors for the case of x-direction. Consider the conservative part of the SSW system (1),

$$\begin{aligned} \frac{\partial \varvec{U}}{\partial t} + \frac{\partial \varvec{F}^x}{\partial x} =\frac{\partial \varvec{U}}{\partial t} + A_1\frac{\partial \varvec{U}}{\partial x} = 0, \end{aligned}$$
(24)

where \(A_1\) is jacobian matrix of the flux function \(\varvec{F}^x\). To derive the eigenvalues and right eigenvectors, it is useful to transform the system (24) in terms of the primitive variables \(\varvec{W}\). The eigenvalues of the jacobian matrix \(A_1\) [6, 30] are given by,

$$\begin{aligned} v_1-\sqrt{3\mathcal {P}_{11}},\quad v_1-\sqrt{\mathcal {P}_{11}}, \quad v_1,\quad v_1,\quad v_1+\sqrt{\mathcal {P}_{11}}, \quad v_1+\sqrt{3\mathcal {P}_{11}}. \end{aligned}$$

We observe that if \(\mathcal {P}_{11}>0\) then all eigenvalues are real. The right eigenvector matrix \({R}^x\) for the matrix \(A_1\) is given by the relation

$$\begin{aligned} {R}^x=\dfrac{\partial \varvec{U}}{\partial \varvec{W}}{R}_{\varvec{W}}^x, \end{aligned}$$

where \(\dfrac{\partial \varvec{U}}{\partial \varvec{W}}\) is the jacobian matrix for the change of variable, given by

$$\begin{aligned} \dfrac{\partial \varvec{U}}{\partial \varvec{W}}=\begin{pmatrix} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ v_1 &{} h &{} 0 &{} 0 &{} 0 &{} 0 \\ v_2 &{} 0 &{} h &{} 0 &{} 0 &{} 0 \\ \frac{1}{2}(\mathcal {P}_{11}+v_1^2) &{} h v_1 &{} 0 &{} \frac{h}{2} &{} 0 &{} 0 \\ \frac{1}{2}(\mathcal {P}_{12}+v_1 v_2) &{} \frac{h v_2}{2} &{} \frac{h v_1}{2} &{} 0 &{} \frac{h}{2} &{} 0 \\ \frac{1}{2}(\mathcal {P}_{22}+v_2^2) &{} 0 &{} h v_2 &{} 0 &{} 0 &{} \frac{h}{2} \end{pmatrix}, \end{aligned}$$

and the matrix \(R^x_{\varvec{W}}\) is given by

$$\begin{aligned} R_{\varvec{W}}^x=\begin{pmatrix} h \mathcal {P}_{11} &{} 0 &{} -h &{} 0 &{} 0 &{} h \mathcal {P}_{11} \\ -\sqrt{3\mathcal {P}_{11}}\mathcal {P}_{11} &{} 0 &{} 0 &{} 0 &{} 0 &{} \sqrt{3\mathcal {P}_{11}}\mathcal {P}_{11} \\ -\sqrt{3\mathcal {P}_{11}}\mathcal {P}_{12} &{} -\sqrt{\mathcal {P}_{11}} &{} 0 &{} 0 &{} \sqrt{\mathcal {P}_{11}} &{} \sqrt{3\mathcal {P}_{11}}\mathcal {P}_{12} \\ 2\mathcal {P}_{11}^2 &{} 0 &{} \mathcal {P}_{11} &{} 0 &{} 0 &{} 2\mathcal {P}_{11}^2 \\ 2\mathcal {P}_{11}\mathcal {P}_{12} &{} \mathcal {P}_{11} &{} \mathcal {P}_{12} &{} 0 &{} \mathcal {P}_{11} &{} 2\mathcal {P}_{11}\mathcal {P}_{12} \\ 2\mathcal {P}_{12}^2 &{} 2\mathcal {P}_{12} &{} 0 &{} 1 &{} 2 \mathcal {P}_{12} &{} 2\mathcal {P}_{12}^2 \end{pmatrix}. \end{aligned}$$

We need to find a scaling matrix \(T^x\) such that the scaled right eigenvector matrix \(\tilde{R}^x=R^x T^x\) satisfies

$$\begin{aligned} \frac{\partial \varvec{U}}{\partial \varvec{V}} ={{\tilde{R}}^x} {{}{{\tilde{R}}^x}}^\top . \end{aligned}$$
(25)

where \(\varvec{V}\) is the entropy variable vector as in Eq. (10). We follow Barth scaling process [2] to scale the right eigenvectors. The scaling matrix \(T^x\) is the square root of \(Y^x\) where \(Y^x\) has the expression

$$\begin{aligned} {Y}^x= \left( \tilde{R}^x_{\varvec{W}} \right) ^{-1} \frac{\partial \varvec{W}}{\partial \varvec{V}} \left( \frac{\partial \varvec{U}}{\partial \varvec{W}}\right) ^{-\top } \left( \tilde{R}^x_{\varvec{W}}\right) ^{-\top }, \end{aligned}$$

which results in

$$\begin{aligned} Y^x=\begin{pmatrix} \frac{1}{12 h \mathcal {P}_{11}^2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} \frac{\mathcal {P}_{11} \mathcal {P}_{22}-\mathcal {P}_{12}^2}{4 h \mathcal {P}_{11}^2} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{1}{3h} &{} \frac{\mathcal {P}_{12}^2}{3 h \mathcal {P}_{11}} &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{\mathcal {P}_{12}^2}{3 h \mathcal {P}_{11}} &{} \frac{3(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)^2+\mathcal {P}_{12}^4}{3 h \mathcal {P}_{11}^2} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \frac{\mathcal {P}_{11} \mathcal {P}_{22}-\mathcal {P}_{12}^2}{4 h \mathcal {P}_{11}^2} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \frac{1}{12 h \mathcal {P}_{11}^2} \end{pmatrix}. \end{aligned}$$

The matrix \(Y^x\) is a block diagonal matrix which contains the blocks of order 1 and 2. It is straightforward to write the square root of a block matrix of order 1. Consider the \(2\times 2\) block sub-matrix of the matrix \(Y^x\) and denote it by \(Y^{x}_b\),

$$\begin{aligned} Y^{x}_b=\begin{pmatrix} \frac{1}{3h} &{} \frac{\mathcal {P}_{12}^2}{3 h \mathcal {P}_{11}} \\ \frac{\mathcal {P}_{12}^2}{3 h \mathcal {P}_{11}} &{} \frac{3(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)^2+\mathcal {P}_{12}^4}{3 h \mathcal {P}_{11}^2} \end{pmatrix}. \end{aligned}$$

We need to find matrix \(T^{x}_b=\sqrt{Y^{x}_b}\). To obtain formula for the matrix \(T^x_b\) we first consider the characteristic polynomial of \(T^{x}_b\),

$$\begin{aligned} {T^{x}_b}^{2}-{{\,\textrm{trace}\,}}(T^{x}_b)T^{x}_b+\det (T^{x}_b)I=0, \end{aligned}$$
(26)

where \(\det (T^{x}_b)=\pm \sqrt{det(Y^{x}_b)}=r_1\), say, with \(r_1\) being the positive square root, given by

$$\begin{aligned} r_1&=\sqrt{\frac{3(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)^2+\mathcal {P}_{12}^4}{9 h^2 \mathcal {P}_{11}^2}-\frac{\mathcal {P}_{12}^4}{9 h^2 \mathcal {P}_{11}^2}}&\\&=\sqrt{\frac{3(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)^2}{9 h^2 \mathcal {P}_{11}^2}}&\\&=\frac{\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2}{\sqrt{3}h \mathcal {P}_{11}}, \end{aligned}$$

and \(I_{2\times 2}\) is the identity matrix. Observe from Eq. (26) that

$$\begin{aligned} {{\,\textrm{trace}\,}}(T^{x}_b)T^{x}_b={T^{x}_b}^2+r_1I=Y^{x}_b+r_1I, \end{aligned}$$
(27)

and,

$$\begin{aligned} ({{\,\textrm{trace}\,}}(T^{x}_b))^2={{\,\textrm{trace}\,}}({{\,\textrm{trace}\,}}(T^{x}_b)T^{x}_b)={{\,\textrm{trace}\,}}(Y^{x}_b+r_1I)={{\,\textrm{trace}\,}}(Y^{x}_b)+2r_1. \end{aligned}$$

Simultaneously solving Eqs. (26), (27) we obtain

$$\begin{aligned} T^{x}_b=\frac{1}{\sqrt{{{\,\textrm{trace}\,}}(Y^{x}_b)+2r_1}}(Y^{x}_b+r_1I). \end{aligned}$$
(28)

Observe that

$$\begin{aligned} {{{\,\textrm{trace}\,}}(Y^{x}_b)+2r_1}&=\frac{1}{3h}+\frac{3(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)^2+\mathcal {P}_{12}^4}{3 h \mathcal {P}_{11}^2}+\frac{2(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)}{\sqrt{3}h \mathcal {P}_{11}} \\&=\frac{\mathcal {P}_{11}^2+{3(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)^2+\mathcal {P}_{12}^4}+2\sqrt{3}\mathcal {P}_{11}(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)}{3 h \mathcal {P}_{11}^2} \\&=\frac{3(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)^2+2\sqrt{3}\mathcal {P}_{11}(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)+\mathcal {P}_{11}^2+\mathcal {P}_{12}^4}{3 h \mathcal {P}_{11}^2}&\\&=\frac{(\sqrt{3}(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)+\mathcal {P}_{11})^2+\mathcal {P}_{12}^4}{3 h \mathcal {P}_{11}^2}. \end{aligned}$$

Since \(h>0\), we have \({{\,\textrm{trace}\,}}(Y^{x}_b)+2r_1>0\). We use notation \(\alpha _1 = \sqrt{{{\,\textrm{trace}\,}}(Y^{x}_b)+2r_1}\). A long simplification using the block matrix \(T^x_b\) as in Eq. (28) results in

$$\begin{aligned} T^x=\begin{pmatrix} \sqrt{\frac{1}{12 h \mathcal {P}_{11}^2}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} \sqrt{\frac{\mathcal {P}_{11} \mathcal {P}_{22}-\mathcal {P}_{12}^2}{4 h \mathcal {P}_{11}^2}} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{\frac{1}{3h}+r_1}{\alpha _1} &{} \frac{\mathcal {P}_{12}^2}{3 h \mathcal {P}_{11}\alpha _1} &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{\mathcal {P}_{12}^2}{3 h \mathcal {P}_{11}\alpha _1} &{} \frac{\beta _1(\beta _1+\mathcal {P}_{11})+\mathcal {P}_{12}^4}{3 h \mathcal {P}_{11}^2\alpha _1} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \sqrt{\frac{\mathcal {P}_{11} \mathcal {P}_{22}-\mathcal {P}_{12}^2}{4 h \mathcal {P}_{11}^2}} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \sqrt{\frac{1}{12 h \mathcal {P}_{11}^2}} \end{pmatrix}. \end{aligned}$$

Remark 4

We proceed similarly in the y-direction, the eigenvalues for the jacobian matrix \(A_2=\frac{\partial \varvec{F}_2}{\partial \varvec{U}}\) are given by

$$\begin{aligned} v_2-\sqrt{3\mathcal {P}_{22}},\quad v_2-\sqrt{\mathcal {P}_{22}},\quad v_2,\quad v_2,\quad v_2+\sqrt{\mathcal {P}_{22}},\quad v_2+\sqrt{3\mathcal {P}_{22}}. \end{aligned}$$

and right eigenvector matrix is given by the relation

$$\begin{aligned} {R}^y=\dfrac{\partial \varvec{U}}{\partial \varvec{W}}{R}_{\varvec{W}}^y, \end{aligned}$$

where

$$\begin{aligned} R_{\varvec{W}}^y=\begin{pmatrix} h \mathcal {P}_{22} &{} 0 &{} -h &{} 0 &{} 0 &{} h \mathcal {P}_{22} \\ -\sqrt{3\mathcal {P}_{22}}\mathcal {P}_{12} &{} -\sqrt{\mathcal {P}_{22}} &{} 0 &{} 0 &{} \sqrt{\mathcal {P}_{22}} &{} \sqrt{3\mathcal {P}_{22}}\mathcal {P}_{12} \\ -\sqrt{3\mathcal {P}_{22}}\mathcal {P}_{22} &{} 0 &{} 0 &{} 0 &{} 0 &{} \sqrt{3\mathcal {P}_{22}}\mathcal {P}_{22} \\ 2\mathcal {P}_{12}^2 &{} 2 \mathcal {P}_{12} &{} 0 &{} 1 &{} 2\mathcal {P}_{12} &{} 2\mathcal {P}_{12}^2 \\ 2\mathcal {P}_{22}\mathcal {P}_{12} &{} \mathcal {P}_{22} &{} \mathcal {P}_{12} &{} 0 &{} \mathcal {P}_{22} &{} 2\mathcal {P}_{22}\mathcal {P}_{12} \\ 2\mathcal {P}_{22}^2 &{} 0 &{} \mathcal {P}_{22} &{} 0 &{} 0 &{} 2\mathcal {P}_{22}^2 \end{pmatrix}. \end{aligned}$$

Accordingly, we obtain the scaling matrix \(T^y\) as,

$$\begin{aligned} T^y=\begin{pmatrix} \sqrt{\frac{1}{12 h \mathcal {P}_{22}^2}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} \sqrt{\frac{\mathcal {P}_{11} \mathcal {P}_{22}-\mathcal {P}_{12}^2}{4 h \mathcal {P}_{22}^2}} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{\frac{1}{3h}+r_2}{\alpha _2} &{} \frac{\mathcal {P}_{12}^2}{3 h \mathcal {P}_{22}\alpha _2} &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{\mathcal {P}_{12}^2}{3 h \mathcal {P}_{22}\alpha _2} &{} \frac{\beta _1(\beta _1+\mathcal {P}_{22})+\mathcal {P}_{12}^4}{3 h \mathcal {P}_{22}^2\alpha _2} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \sqrt{\frac{\mathcal {P}_{11} \mathcal {P}_{22}-\mathcal {P}_{12}^2}{4 h \mathcal {P}_{22}^2}} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \sqrt{\frac{1}{12 h \mathcal {P}_{22}^2}} \end{pmatrix}, \end{aligned}$$

where \(r_2=\frac{\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2}{\sqrt{3}h \mathcal {P}_{22}}\) and \(\alpha _2=\sqrt{\frac{(\sqrt{3}(\mathcal {P}_{11}\mathcal {P}_{22}-\mathcal {P}_{12}^2)+\mathcal {P}_{22})^2+\mathcal {P}_{12}^4}{3 h \mathcal {P}_{22}^2}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Bhoriya, D., Kumar, H. et al. Entropy Stable Schemes for the Shear Shallow Water Model Equations. J Sci Comput 97, 77 (2023). https://doi.org/10.1007/s10915-023-02374-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02374-4

Keywords

Mathematics Subject Classification

Navigation