Skip to main content
Log in

A Bayesian Scheme for Reconstructing Obstacles in Acoustic Waveguides

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate inverse obstacle scattering problems in acoustic waveguides with low-frequency data. A Bayesian inference scheme, combining a multi-fidelity strategy and surrogate model with guided modes and a deep neural network is proposed to reconstruct the shapes of unknown scattering objects. First, the inverse problem is reformulated as a statistical inference problem using Bayes’ formula, which provides statistical characteristics of the posterior distribution and quantification of the uncertainties. The well-posedness of the posterior distribution is proved by using the f-divergence. Subsequently, a Markov Chain Monte Carlo algorithm is used to explore the posterior density. We propose a new multi-fidelity surrogate model to accelerate the sampling procedure while maintaining high accuracy. Our numerical simulations demonstrate that this method not only produces high-quality reconstructions but also substantially reduces computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

This is a piece of fundamental research and no data were analyzed or generated.

References

  1. Baggeroer, A.B., Kuperman, W.A., Mikhalevsky, P.N.: An overview of matched field methods in ocean acoustics. IEEE J. Ocean. Eng. 18(4), 401–424 (1993)

    Google Scholar 

  2. Dhia, A.S.B.B., Dakhia, G., Hazard, C., Chorfi, L.: Diffraction by a defect in an open waveguide: a mathematical analysis based on a modal radiation condition. SIAM J. Appl. Math. 70(3), 677–693 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Snyder, A.W., Love, J.D., et al.: Optical Waveguide Theory, vol. 175. Chapman and Hall, London (1983)

    Google Scholar 

  4. Bourgeois, L., Lunéville, E.: The linear sampling method in a waveguide: a modal formulation. Inverse Probl. 24(1), 015018 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Borcea, L., Meng, S.: Factorization method versus migration imaging in a waveguide. Inverse Probl. 35(12), 124006 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Arens, T., Gintides, D., Lechleiter, A.: Direct and inverse medium scattering in a three-dimensional homogeneous planar waveguide. SIAM J. Appl. Math. 71(3), 753–772 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Bourgeois, L., Lunéville, E.: On the use of the linear sampling method to identify cracks in elastic waveguides. Inverse Probl. 29(2), 025017 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Monk, P., Selgas, V.: Sampling type methods for an inverse waveguide problem. Inverse Probl. Imaging 6(4), 709–747 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Borcea, L., Nguyen, D.L.: Imaging with electromagnetic waves in terminating waveguides (2015). arXiv preprint arXiv:1510.07062

  10. Meng, S.: A sampling type method in an electromagnetic waveguide. Inverse Probl. Imaging 15(4), 745–762 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Bourgeois, L., Le Louër, F., Lunéville, É.: On the use of lamb modes in the linear sampling method for elastic waveguides. Inverse Probl. 27(5), 055001 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Bourgeois, L., Lunéville, E.: On the use of the linear sampling method to identify cracks in elastic waveguides. Inverse Probl. 29(2), 025017 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Bourgeois, L., Fliss, S.: On the identification of defects in a periodic waveguide from far field data. Inverse Probl. 30(9), 095004 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Chen, J., Huang, G.: A direct imaging method for inverse electromagnetic scattering problem in rectangular waveguide. Commun. Comput. Phys. 23(5), 1415–1433 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Li, M., Zhang, R.: Near-field imaging of sound-soft obstacles in periodic waveguides. Inverse Probl. Imaging 11, 6 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, R.: Spectrum decomposition of translation operators in periodic waveguide. SIAM J. Appl. Math. 81(1), 233–257 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Zhang, R., Sun, J.: The reconstruction of obstacles in a waveguide using finite elements. J. Comput. Math. 36(1), 29–46 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Stuart, A.M.: Inverse problems: a bayesian perspective. Acta Numer 19, 451–559 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Li, Z., Deng, Z., Sun, J.: Extended-sampling-bayesian method for limited aperture inverse scattering problems. SIAM J. Imag. Sci. 13(1), 422–444 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Li, Z., Liu, Y., Sun, J., Liwei, X.: Quality-bayesian approach to inverse acoustic source problems with partial data. SIAM J. Sci. Comput. 43(2), A1062–A1080 (2021)

    MathSciNet  Google Scholar 

  22. Yang, Z., Gui, X., Ming, J., Hu, G.: Bayesian approach to inverse time-harmonic acoustic scattering with phaseless far-field data. Inverse Probl. 36(6), 065012 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Yang, Z., Gui, X., Ming, J., Hu, G.: Bayesian approach to inverse time-harmonic acoustic obstacle scattering with phaseless data generated by point source waves. Comput. Methods Appl. Mech. Eng. 386, 114073 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Huang, J., Deng, Z., Xu, L.: A bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Probl. Imaging 15, 5 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Liu, Y., Guo, Y., Sun, J.: A deterministic-statistical approach to reconstruct moving sources using sparse partial data. Inverse Probl. 37(6), 065005 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Yin, Y., Yin, W., Meng, P., Liu, H.: On a hybrid approach for recovering multiple obstacles. Commun. Comput. Phys. 31(3), 869–892 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Yin, Y., Yin, W., Meng, P., Liu, H.: The interior inverse scattering problem for a two-layered cavity using the bayesian method. Inverse Probl. Imaging 16, 673–690 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Bui-Thanh, T., Ghattas, O.: An analysis of infinite dimensional bayesian inverse shape acoustic scattering and its numerical approximation. SIAM/ASA J. Uncertain. Quant. 2(1), 203–222 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93. Springer, Berlin (2019)

    MATH  Google Scholar 

  30. Sun, J.: Local estimators and bayesian inverse problems with non-unique solutions. Appl. Math. Lett. 132, 108149 (2022)

    MathSciNet  MATH  Google Scholar 

  31. Kirsch, A., et al.: An Introduction to the Mathematical Theory of Inverse Problems, vol. 120. Springer, Berlin (2011)

    MATH  Google Scholar 

  32. Mishra, S., Ochsner, D., Ruf, A.M., Weber, F.: Well-posedness of bayesian inverse problems for hyperbolic conservation laws (2021). arXiv preprint arXiv:2107.09701

  33. Hosseini, B., Nigam, N.: Well-posed bayesian inverse problems: priors with exponential tails. SIAM/ASA J. Uncertain. Quant. 5(1), 436–465 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Latz, J.: On the well-posedness of bayesian inverse problems. SIAM/ASA J. Uncertain. Quant. 8(1), 451–482 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Sprungk, B.: On the local lipschitz stability of bayesian inverse problems. Inverse Probl. 36(5), 055015 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Yan, L., Zhou, T.: Adaptive multi-fidelity polynomial chaos approach to bayesian inference in inverse problems. J. Comput. Phys. 381, 110–128 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Yan, L., Zhou, T.: An adaptive surrogate modeling based on deep neural networks for large-scale bayesian inverse problems. Commun. Comput. Phys. 28(5), 2180–2205 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Jia, J., Zhao, Q., Zongben, X., Meng, D., Leung, Y.: Variational bayes’ method for functions with applications to some inverse problems. SIAM J. Sci. Comput. 43(1), A355–A383 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Jia, J., Li, P., Meng, D.: Stein variational gradient descent on infinite-dimensional space and applications to statistical inverse problems. SIAM J. Numer. Anal. 60(4), 2225–2252 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Villa, U., Petra, N., Ghattas, O.: Hippylib: an extensible software framework for large-scale inverse problems governed by PDES: part I: deterministic inversion and linearized bayesian inference. ACM Trans. Math. Softw. 47(2), 1–34 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Jin, B.: Fast bayesian approach for parameter estimation. Int. J. Numer. Methods Eng. 76(2), 230–252 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 60(3), 550–591 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Lehtinen, M.S., Paivarinta, L., Somersalo, E.: Linear inverse problems for generalised random variables. Inverse Probl. 5(4), 599 (1989)

    MathSciNet  MATH  Google Scholar 

  44. Bui-Thanh, T., Ghattas, O.: Analysis of the hessian for inverse scattering problems: I. Inverse shape scattering of acoustic waves. Inverse Probl. 28(5), 055001 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Hastings, W.K.: Monte carlo sampling methods using Markov chains and their applications (1970)

  46. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    MATH  Google Scholar 

  47. Guo, L.: Sparse approximation of data-driven polynomial chaos expansions: an induced sampling approach. Commun. Math. Res. 36, 2 (2020)

    MathSciNet  Google Scholar 

  48. Gao, Yu., Liu, H., Wang, X., Zhang, K.: On an artificial neural network for inverse scattering problems. J. Comput. Phys. 448, 110771 (2022)

    MathSciNet  MATH  Google Scholar 

  49. Kingma, D.P., Adam, J.B.: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  50. Christen, J.A., Fox, C.: Markov Chain Monte Carlo using an approximation. J. Comput. Graph. Stat. 14(4), 795–810 (2005)

    MathSciNet  Google Scholar 

  51. Efendiev, Y., Datta-Gupta, A., Ginting, V., Ma, X., Mallick, B.: An efficient two-stage Markov Chain Monte Carlo method for dynamic data integration. Water Resour. Res. 41, 12 (2005)

    Google Scholar 

  52. Efendiev, Y., Hou, T., Luo, W.: Preconditioning Markov Chain Monte Carlo simulations using coarse-scale models. SIAM J. Sci. Comput. 28(2), 776–803 (2006)

    MathSciNet  MATH  Google Scholar 

  53. Ginting, V., Pereira, F., Presho, M., Wo, S.: Application of the two-stage Markov Chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model. Comput. Geosci. 15, 691–707 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Hoang, V.H., Schwab, C., Stuart, A.M.: Complexity analysis of accelerated MCMC methods for bayesian inversion. Inverse Probl. 29(8), 085010 (2013)

    MathSciNet  MATH  Google Scholar 

  55. Stuart, G.K., Minkoff, S.E., Pereira, F.: A two-stage Markov Chain Monte Carlo method for seismic inversion and uncertainty quantification. Geophysics 84(6), R1003–R1020 (2019)

    Google Scholar 

  56. Madrigal-Cianci, J.P., Nobile, F., Tempone, R.: Analysis of a class of multilevel Markov Chain Monte Carlo algorithms based on independent metropolis-hastings. SIAM ASA J. Uncertain. Quant. 11(1), 91–138 (2023)

    MathSciNet  MATH  Google Scholar 

  57. Dodwell, T.J., Ketelsen, C., Scheichl, R., Teckentrup, A.L.: A hierarchical multilevel Markov Chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow. SIAM ASA J. Uncertain. Quant. 3(1), 1075–1108 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank all the anonymous reviewers for their valuable comments and suggestions. The work of Y. Gao was supported by the Graduate InnovationFund of Jilin University. The work of H. Liu was supported by the Hong Kong RGC General Research Funds, 12302017, 12301218, 12302919 and ANR/RGC Joint Research Fund, A-HKBU203/19. The work of X. Wang was supported by the NSFC Grants (12001140 and 11971133) and the Fundamental Research Funds for the Central Universities (FRFCU5710050422 and 2022FRFK060026). The work of K. Zhang was supported by the NSF of China under the grant No. 12271207, and by the fundamental research funds for the central universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Liu or Kai Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Theorem 6.1

(Fernique Theorem, theorem 6.9 in [18]) If \(\mu = N(0, C)\) is a Gaussian measure on some Banach space Z, so that \(\mu (Z) = 1\), then there is a \(\varepsilon \)> 0 such that

$$\int _Z\exp (\varepsilon \Vert \varvec{z}\Vert _Z^2)d\mu (\varvec{z})<\infty .$$
Table 15 Example of f-divergence functions

Appendix B

For the sake of convenience, let \(\displaystyle \pi _1(\varvec{z})=\frac{d\mu _1}{d\mu _0}\) and \(\displaystyle \pi _2(\varvec{z})=\frac{d\mu _2}{d\mu _0}\) be the Radon–Nikodym derivatives of \(\mu _1\) and \(\mu _2\) with respect to \(\mu _0\), respectively.

Appendix C

Algorithm 2
figure b

Data-driven method by neural network

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Liu, H., Wang, X. et al. A Bayesian Scheme for Reconstructing Obstacles in Acoustic Waveguides. J Sci Comput 97, 53 (2023). https://doi.org/10.1007/s10915-023-02368-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02368-2

Keywords

Mathematics Subject Classification

Navigation