Skip to main content
Log in

Analyses of the Contour Integral Method for Time Fractional Normal-Subdiffusion Transport Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we theoretically and numerically discuss a class of time fractional normal-subdiffusion transport equation, which depicts a crossover from normal diffusion (as \(t\rightarrow 0\)) to sub-diffusion (as \(t\rightarrow \infty \)). Firstly, the well-posedness and regularities of the model are studied by using the bivariate Mittag-Leffler function. Theoretical results show that after introducing the first-order derivative operator, the regularity of the solution can be improved in substance. Then, a numerical scheme with high-precision is developed no matter the initial value is smooth or non-smooth. More specifically, we use the contour integral method (CIM) with parameterized hyperbolic contour to approximate the temporal local and non-local operators, and employ the standard Galerkin finite element method for spatial discretization. Rigorous error estimates show that the proposed numerical scheme has spectral accuracy in time and optimal convergence order in space. Besides, we further improve the algorithm and reduce the computational cost by using the barycentric Lagrange interpolation. Finally, the obtained theoretical results as well as the acceleration algorithm are verified by several 1-D and 2-D numerical experiments, which also show that the numerical scheme developed in this paper is effective and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  2. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems. Springer-Verlag, Berlin (2011)

    MATH  Google Scholar 

  3. Bazhlekova, E.: Completely monotone multinomal Mittag-Leffler fuctions and diffudion equations with multiple time-derivatives. Fract. Calc. Appl. Anal. 24(1), 88–111 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75(254), 673–696 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Chen, Z.Q.: Time fractional equations and probabilistic representation. Chaos Solitons Fract. 102, 168–174 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Colbrook, M.J.: Computing semigroups with error control. SIAM J. Numer. Anal. 60(1), 396–422 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Colbrook, M.J., Lorna, J.A.: A contour method for time-fractional PDEs and an application to fractional viscoelastic beam equations. J. Comp. Phys. 454, 110995 (2022)

    MathSciNet  MATH  Google Scholar 

  8. Deng, W.H., Li, B.Y., Qian, Z., Wang, H.: Time discretization of a tempered fractional Feynman–Kac equation with measure data. SIAM J. Numer. Anal. 56(6), 3249–3275 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Deng, W.H., Zhang, Z.J.: High Accuracy Algorithm for the Differential Equations Governing Anomolous Diffusion: Algorithm and Models for Anomolous Diffudion. World Scientific, Singapore (2019)

    Google Scholar 

  11. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence, Rhode Island (2010)

    MATH  Google Scholar 

  12. Essah, W.A., Delves, L.M.: On the numerical inversion of the Laplace transform. Inverse Probl. 4(3), 705–724 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Fernandez, A., Kürt, C., Özarslan, M.A.: A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators. Comput. Appl. Math. 39, 200 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  15. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag–Leffler Functions. Related Topics and Applications, Springer-Verlag, Berlin Heidelberg (2010)

    MATH  Google Scholar 

  17. Garrappa, R.: Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53(3), 1350–1369 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Jin, B.T., Li, B.Y., Zhou, Z.: Numerical analysis of nonlinear subdiffudion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    MathSciNet  Google Scholar 

  19. Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the \(L_1\) scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Jin, B.T., Lazarov, R., Liu, Y.K., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 852–843 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  23. Kubica, A., Yamamoto, M.: Initial-boundary value problems for fractional diffusion equations with time-dependent coeffcients. Fract. Calc. Appl. Anal. 21(2), 276–311 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Lopez-Fernándz, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mappings. Appl. Numer. Math. 51(2–3), 289–303 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Lopez-Fernándz, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44(3), 1332–1350 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Li, B.Y., Ma, S.: A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data. J. Sci. Comput. 87, 1–16 (2021)

    MathSciNet  Google Scholar 

  27. Li, B. Y., Lin,Y. P., Ma, S., and Rao, Q. Q.: An exponential spectral method using VP means for semilinear subdiffusion equations with rough data. SIAM J. Numer. Anal., 2023 (accepted)

  28. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Li, X., Liao, H.L., Zhang, L.M.: A second-order fast compact scheme with unequal time-steps for subdiffusion problems. Numer. Algorithms 86, 1011–1039 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Luchko, Yu.: Operational method in fractional calculus. Fract. Calc. Appl. Anal. 2(4), 463–488 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Li, Z.Y., Liu, Y.K., Yamamoto, M.: Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 257, 381–397 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Pyhs. A: Math. Gen. 37, 161–208 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Mclean, W., Thomée, V.: Time discretization of an evolution equation via Laplace transforms. IMA J. Numer. Anal. 24(3), 439–463 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Mclean, W., Thomée, V.: Maximun-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30(1), 208–230 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Mclean, W., Thomée, V.: Numerical solution via Laplace transforms of a fractional order evolution equation. J. lntegral Equ. Appl. 22(1), 57–94 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Mclean, W.: Numerical evaluation of Mittag-Lefler functions. Calcolo 58(1), 1–25 (2021)

    MathSciNet  Google Scholar 

  40. Mustapha, K.: An \(L_1\) approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-grade meshes. SIAM J. Numer. Anal. 58(2), 1319–1338 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Mu, J., Ahmadc, B., Huang, S.B.: Existence and regularity of solutions to time-fractional diffusion equations. Comput. Math. Appl. 73(6), 985–996 (2017)

    MathSciNet  MATH  Google Scholar 

  42. F. G. Ma, L. J. Zhao, Y. J. Wang, and W. H. Deng.: The contour integral method for Feynmann-Kac equations with two internal states. arXiv:2304.07779

  43. Nikana, O., Tenreiro Machadob, J.A., Golbabaia, A., Nikazada, T.: Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media. Int. Commun. Heat. Mass. 111, 104443 (2020)

    Google Scholar 

  44. Podlubny, I.: Fractional Differential Equations. Academic press, San Diego (1999)

    MATH  Google Scholar 

  45. Piessens, R.: A bibliography on numerical inversion of the Laplace transform and applications. J. Comput. Appl. Math. 1(2), 115–128 (1975)

    MathSciNet  MATH  Google Scholar 

  46. Piessens, R., Dang, N.D.P.: A bibliography on numerical inversion of the Laplace transform and applications: a supplement. J. Comput. Appl. Math. 2(3), 225–228 (1976)

    MathSciNet  MATH  Google Scholar 

  47. Pang, H.K., Sun, H.W.: Fast numerical method for fractional diffusion equations. J. Sci. Comput. 66(1), 41–66 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equation and application to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39(10), 1296 (2003)

    Google Scholar 

  50. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(10), 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature. Math. Comp. 69, 177–195 (2000)

    MathSciNet  MATH  Google Scholar 

  52. She, M.F., Li, D.F., Sun, H.W.: A transformed \(L1\) method for solving the multi-term time-fractional diffusion problem. Math. Comput. Simulat. 193, 584–606 (2022)

    MathSciNet  MATH  Google Scholar 

  53. Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  54. Trefethen, L.N., Weideman, J.A.C., Schmelzer, T.: Talbot quadratures and rational approximations. BIT 46(3), 653–670 (2006)

    MathSciNet  MATH  Google Scholar 

  55. Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed \(C_0\)-semigroups. Potential Anal. 42, 115–140 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Talbot, A.: The accurate numerical inversion of Laplace transforms. IMA J. Appl. Math. 23(1), 97–120 (1979)

    MathSciNet  MATH  Google Scholar 

  57. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    MathSciNet  MATH  Google Scholar 

  58. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  59. Weideman, J.A.C.: Improved contour integral methods for parabolic PDEs. IMA J. Numer. Anal. 30(1), 334–350 (2010)

    MathSciNet  MATH  Google Scholar 

  60. Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76(259), 1341–1356 (2007)

    MathSciNet  MATH  Google Scholar 

  61. Weideman, J.A.C.: Optimizing Talbot’s contours for the inversion of the Laplace transform. SIAM J. Numer. Anal. 44(6), 2342–2362 (2006)

    MathSciNet  MATH  Google Scholar 

  62. Yan, Y.G., Sun, Z.Z., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Zhang, Y., Green, C., Baeumer, B.: Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings. J. Hydrol. 512, 315–331 (2014)

    Google Scholar 

  64. Zeng, F.H., Li, C.P., Liu, F.W., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55–A78 (2015)

    MathSciNet  MATH  Google Scholar 

  65. Zheng, Z.Y., Wang, Y.M.: An averaged L1-type compact difference method for time-fractional mobile/immobile diffusion equations with weakly singular solutions. Appl. Math. Lett. 131, 108076 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China under Grant nos. 12,071,195 and 12225107, and the Innovative Groups of Basic Research in Gansu Province under Grant No. 22JR5RA391. The author Zhao is supported by Guangdong Basic and Applied Basic Research Foundation No. 2022A1515011332 and the Fundamental Research Funds for the Central University under Grant No. D5000230096. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijing Zhao.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Limiting Asymptotic Behavior of the MSD of Subordinator \(\textbf{B}[\mathbb {E}_t]\)

Let \(\textbf{B}(t)\) denote the d-dimensional Brownian motion and \(\mathbb {E}_t\) be the inverse process or hitting time process of the \(\beta \)-stable subordinator \(\mathbb {S}_t= Kt +\overline{S}_t\) with drift, where \(0<\beta <1\) and \(K>0\) (\(K=0\) implies drift-less). Then, by the celebrated Lévy-Khintchine formula [1], we have \(\mathbb {E}[e^{i(\lambda ,\mathbb {S}_t)}]=e^{-t(K\lambda +\lambda ^{\beta })}\).

Denote G and H as the PDFs of \(\textbf{B}(t)\) and \(\mathbb {E}_t\), respectively. Then, there is \(u(t,x)=\int _{0}^{\infty }G(x,s)H(s,t)ds\). Since \(\partial G(x,t)=\varDelta G(x,t)\) and \(H(u,t)=-\partial _u\int _{0}^{t}g(y,u)dy\) with g being the PDF of \(\mathbb {S}_t\), then by Laplace transformation, we obtain \(\widehat{H}(u,z)=-\partial _u\widehat{g}(u,z)z^{-1}=\frac{Kz+z^{\beta }}{z}e^{-u(Kz+z^{\beta })}\). Based on these facts, the mean-squared displacement (MSD) of \(\textbf{B}[\mathbb {E}_t]\) is

$$\begin{aligned} \begin{aligned} D(t):=\left\langle (\textbf{B}[\mathbb {E}_t])^2\right\rangle =\int _{\mathbb {R}^d}|x|^{2}u(t,x)dx =\int _{0}^{\infty }H(u,t)\int _{\mathbb {R}^d}|x|^{2}G(x,u)dxdu=2d\langle \mathbb {E}_t\rangle , \end{aligned}\end{aligned}$$

where d is the dimension of space. Transforming \(\langle \mathbb {E}_t\rangle \) by Laplace w.r.t. t, we have

$$\begin{aligned} \mathscr {L}_{t\rightarrow z}\{\langle \mathbb {E}_t\rangle \}(z):=\int _{0}^{\infty }u\widehat{H}(u,z)du=\frac{1}{z(Kz+z^{\beta })}\simeq \left\{ \begin{aligned}&K^{-1}z^{-2},\quad{} & {} z\rightarrow \infty ,\\&z^{-(1+\beta )},\quad{} & {} z\rightarrow 0. \end{aligned}\right. \end{aligned}$$

Further, by Tauberian’s theorem (cf. [1, Theorem 1.5.7]), the limiting asymptotic behaviors of MSD are

$$\begin{aligned} D(t)\simeq \left\{ \begin{aligned}&2dK^{-1}t,\quad{} & {} t\rightarrow 0,\\&\frac{2d}{\varGamma (1+\beta )}t^{\beta },{} & {} t\rightarrow \infty . \end{aligned}\right. \end{aligned}$$

Now, it can be clearly seen that the model we discuss in this paper depicts an crossover from normal diffusion to sub-diffusion. That is, when t is small enough, it portrays normal diffusion; as t grows large enough, it reflects sub-diffusion.

Appendix B

1.1 B.1 Definition of the Multivariate Mittag-Leffler Function

Let \(\alpha ,\beta ,\gamma \in \mathbb {C}\), and \(\textrm{Re}(\alpha )>0,\textrm{Re}(\beta )>0\). The bivariate Mittag-Leffler function is defined as

$$\begin{aligned} E_{(\alpha ,\beta ),\gamma }^{\delta }(z_1, z_2):=\sum \limits _{k=0}^{\infty }\sum \limits _{l=0}^{\infty }\frac{(\delta )_{k+l}}{\varGamma (\alpha k+\beta l+\gamma )}\cdot \frac{z_1^k z_2^l}{k!l!}, \end{aligned}$$
(59)

where the numerator \((\delta )_{k+l}\) is the Pochhammer symbol, i.e.,

$$\begin{aligned} (a)_n=\frac{\varGamma (a+n)}{\varGamma (a)}=a(a+1)(a+2)...(a+n-1). \end{aligned}$$

As mentioned in [3], the multiple power series (59), which converges absolutely and locally uniformly, defines an entire function in \(z_1\) and \(z_2\).

1.2 B.2 Proof of Lemma 1

Proof

Let \(\alpha \), \(\beta \), \(\gamma \), \(\omega _1\), \(\omega _2\in \mathbb {R}\) with \(0<\alpha <\beta \le 1\), \(\gamma \ge 0\) and \(\omega _1\), \(\omega _2<0\). Firstly, for \(t=0\), according to the series representation of the bivariate Mittag-Leffler function in Eq. (59), there exist a positive constant C such that

$$\begin{aligned} \left| E^1_{(\alpha ,~\beta ),~\gamma }\left( \omega _1 t^{\alpha }, \omega _2 t^{\beta }\right) \right| =\frac{1}{\varGamma (\gamma )}\le C. \end{aligned}$$
(60)

For \(t>0\), by Corollary 2 in [13], the contour integral representation of the bivariate Mittag-Leffler function \(E^1_{(\alpha ,~\beta ),~\gamma }(\omega _1 t^{\alpha }, \omega _2 t^{\beta })\) is

$$\begin{aligned} \begin{aligned} E^1_{(\alpha ,~\beta ),~\gamma }\left( \omega _1 t^{\alpha }, \omega _2 t^{\beta }\right) =\frac{t^{1-\gamma }}{2\pi i}\int _{\varGamma _{\theta ,\delta }}\frac{e^{zt}z^{-\gamma }}{1+|\omega _1|z^{-\alpha }+|\omega _2|z^{-\beta }}dz. \end{aligned} \end{aligned}$$
(61)
Case I:

for given \(\beta \in (0,1)\) and any \(\alpha \in (0,1)\) with \(0<\alpha<\beta <1\). When \(z\in \varGamma _{\theta ,\delta }\), we choose \(\theta \in (\frac{\pi }{2},\pi )\), which only depends on \(\beta \) and closes to \(\frac{\pi }{2}\) enough such that \(\arg (|\omega _2|z^{-\beta })>-\frac{\pi }{2}\). Then the angle between \(|\omega _2|z^{-\beta }\) and \(1+|\omega _1|z^{-\alpha }\) is less then \(\pi /2\) and the denominator in (61) satisfies

$$\begin{aligned} \left| 1+|\omega _1|z^{-\alpha }+|\omega _2|z^{-\beta }\right| \ge |\omega _2||z|^{-\beta }\cos \beta \theta . \end{aligned}$$
(62)

Based on these, choosing \(\delta =1/t>0\) large enough, then we get

$$\begin{aligned}\begin{aligned} \left| E^1_{(\alpha ,~\beta ),~\gamma }\left( \omega _1 t^{\alpha }, \omega _2 t^{\beta }\right) \right|&\le \frac{t^{1-\gamma }}{ 2\pi }\int _{\varGamma _{\theta ,\delta }}\frac{e^{|z|t}|z|^{-\gamma }}{\left| 1+|\omega _1|z^{-\alpha }+|\omega _2|z^{-\beta }\right| }|dz|\\&\le \frac{t^{1-\gamma }}{2\pi \left| \omega _2\right| \cos (\beta \theta )} \int _{\varGamma _{\theta ,\delta }}e^{|z|t}|z|^{\beta -\gamma }|dz| \\&\le \frac{t^{1-\gamma }}{2\pi \left| \omega _2\right| \cos (\beta \theta )}Ct^{\gamma -1-\beta } \le \frac{C}{|\omega _1t^{\beta }|}. \end{aligned} \end{aligned}$$
Case II:

for given \(\alpha \in (0,1)\), \(\beta =1\). Similar to (i), when \(z\in \varGamma _{\theta ,\delta }\), by choosing \(\theta \in (\frac{\pi }{2},\pi )\), which depends on \(\alpha \) and closes to \(\frac{\pi }{2}\) enough such that \(\alpha \theta +\arg (1+|\omega _2|z^{-1})\ge -\frac{\pi }{2}\). In this case, the denominator in (61) satisfies

$$\begin{aligned} \left| 1+|\omega _2|z^{-1}+|\omega _1|z^{-\alpha }\right| >\left| 1+|\omega _2|z^{-1}\right| \ge |\omega _2||z|^{-1}\cos \left( \theta -\frac{\pi }{2}\right) . \end{aligned}$$
(63)

Similarly, there holds

$$\begin{aligned}\begin{aligned} \left| E^1_{(\alpha ,~\beta ),~\gamma }\left( \omega _1 t^{\alpha }, \omega _2 t^{\beta }\right) \right|&\le \frac{t^{1-\gamma }}{ 2\pi }\int _{\varGamma _{\theta ,\delta }}\frac{e^{|z|t}|z|^{-\gamma }}{\left| 1+|\omega _1|z^{-\alpha }+|\omega _2|z^{-\beta }\right| }|dz|\\&\le \frac{t^{1-\gamma }}{2\pi \left| \omega _2\right| \sin (\theta )} \int _{\varGamma _{\theta ,\delta }}e^{|z|t}|z|^{1-\gamma }|dz|\\&\le \frac{t^{1-\gamma }}{2\pi \left| \omega _2\right| \sin (\theta )}Ct^{\gamma -1-1} \le \frac{C}{|\omega _2t|}. \end{aligned}\end{aligned}$$

Thus the proof of this lemma is completed. \(\square \)

Appendix C: Proof of Corollary 1

Proof

Firstly, we let \(t_0<t\le \varLambda t_0\) and take the solution to Problem (1) as \(u(x,t)=\delta (t-t_0)\cdot \textbf{1}_{(\varOmega )}\), where \(\delta (t)\) is the Dirac delta function. Then \(u_0\equiv 0\), \(\widehat{u}(x,z)=e^{-zt_0}\cdot \textbf{1}_{(\varOmega )}\), \(\widehat{f}(x,z)=(Kz+z^{\beta })e^{-zt_0}\cdot \textbf{1}_{(\varOmega )}\), and

$$\begin{aligned} u^{N}(t)=\frac{\tau }{2\pi i}\sum _{k=-(N-1)}^{N-1}e^{z(\phi _k)t}e^{-z(\phi _k)t_0}z'(\phi _k). \end{aligned}$$

From (36)) and (14), there is a constant \(C_2\), which depends on \(\varOmega ,K,\beta ,\alpha ,\mu \), such that

$$\begin{aligned} \left\| \widehat{f}(z)\right\| _{Nr} \le \sup \limits _{z\in D\subset \Sigma _{\theta }}|\varOmega |\left| Kz+z^{\beta }\right| \left| e^{-zt_0}\right| \le C|z|\cdot \left| e^{-zt_0}\right| \le C_2. \end{aligned}$$

Thus, for \(t_0< t\le \varLambda t_0\), by Theorem 3, we can obtain

$$\begin{aligned}&\left\| \frac{\tau }{2\pi i}\sum _{k=-(N-1)}^{N-1}e^{z(\phi _k)(t-t_0)}z'(\phi _k)\right\| _{L^2(\varOmega )}\\&\quad \le C_2 L\left( \mu t_0\sin (\alpha -\tilde{d})\right) \varphi (\alpha ,\tilde{d})\cdot \left( \varepsilon \cdot (\varepsilon _N(\varrho ))^{\varrho -1}+\frac{(\varepsilon _N(\varrho ))^{\varrho }}{1-\varepsilon _N(\varrho )}\right) , \end{aligned}$$

i.e.,

$$\begin{aligned}&\left\| \sum _{k=-(N-1)}^{N-1}e^{z(\phi _k)(t-t_0)}z'(\phi _k)\right\| _{L^2(\varOmega )}\\&\quad \le C_1 L\left( \mu t_0\sin (\alpha -\tilde{d})\right) \varphi (\alpha ,\tilde{d}) \cdot \left( \varepsilon \cdot (\varepsilon _N(\rho ))^{\rho -1}+\frac{(\varepsilon _N(\varrho ))^{\rho }}{1-\varepsilon _N(\rho )}\right) . \end{aligned}$$

Actually, the above estimation is obtained by using the fact that \(\int _{0}^{\infty }e^{-\mu t\sin (\alpha -\tilde{d})\cosh (x)}\le \int _{0}^{\infty }e^{-\mu t_0\sin (\alpha -\tilde{d})\cosh (x)}\le L(\mu t_0\sin (\alpha -\tilde{d}))\) (cf. Lemma 3). In other words,

$$\begin{aligned}&\left\| \sum _{k=-(N-1)}^{N-1}e^{z(\phi _k)(t-t_0)}z'(\phi _k)\right\| _{L^2(\varOmega )}\\&\quad \le C_1\int _{0}^{\infty }e^{-\mu t\sin (\alpha -\tilde{d})\cosh (x)}\varphi (\alpha ,\tilde{d})\cdot \left( \varepsilon \cdot (\varepsilon _N(\rho ))^{\rho -1} +\frac{(\varepsilon _N(\rho ))^{\rho }}{1-\varepsilon _N(\rho )}\right) , \end{aligned}$$

still holds.

So, for \(0< t\le (\varLambda -1) t_0\), there is

$$\begin{aligned}&\left\| \sum _{k=-(N-1)}^{N-1}e^{z(\phi _k)t}z'(\phi _k)\right\| _{L^2(\varOmega )}\\&\quad \le C_1\int _{0}^{\infty }e^{-\mu (t+t_0)\sin (\alpha -\tilde{d})\cosh (x)}\varphi (\alpha ,\tilde{d})\cdot \left( \varepsilon \cdot (\varepsilon _N(\varrho ))^{\varrho -1}+\frac{(\varepsilon _N(\varrho ))^{\varrho }}{1-\varepsilon _N(\varrho )}\right) \\&\quad \le C_1L\left( \mu t_0\sin (\alpha -\tilde{d})\right) \varphi (\alpha ,\tilde{d})\cdot \left( \varepsilon \cdot (\varepsilon _N(\varrho ))^{\varrho -1} +\frac{(\varepsilon _N(\rho ))^{\rho }}{1-\varepsilon _N(\rho )}\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Zhao, L., Deng, W. et al. Analyses of the Contour Integral Method for Time Fractional Normal-Subdiffusion Transport Equation. J Sci Comput 97, 45 (2023). https://doi.org/10.1007/s10915-023-02359-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02359-3

Keywords

Mathematics Subject Classification (2020)

Navigation