Skip to main content
Log in

A FEAST SVDsolver Based on Chebyshev–Jackson Series for Computing Partial Singular Triplets of Large Matrices

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The FEAST eigensolver is extended to the computation of the singular triplets of a large matrix A with the singular values in a given interval. The resulting FEAST SVDsolver is subspace iteration applied to an approximate spectral projector of \(A^TA\) corresponding to the desired singular values in a given interval, and constructs approximate left and right singular subspaces corresponding to the desired singular values, onto which A is projected to obtain Ritz approximations. Differently from a commonly used contour integral-based FEAST solver, we propose a robust alternative that constructs approximate spectral projectors by using the Chebyshev–Jackson polynomial series, which are shown to be symmetric positive semi-definite with the eigenvalues in [0, 1]. We prove the pointwise convergence of this series and give compact estimates for pointwise errors of it and the step function that corresponds to the exact spectral projector of interest. We present error bounds for the approximate spectral projector and reliable estimates for the number of desired singular triplets, prove the convergence of the resulting FEAST SVDsolver, and propose practical selection strategies for determining the series degree and the subspace dimension. The solver and results on it are directly applicable or adaptable to the real symmetric and complex Hermitian eigenvalue problem. Numerical experiments illustrate that the FEAST SVDsolver is substantially more efficient than the contour integral-based FEAST SVDsolver, and it is also more robust and stable than the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquires about data availability should be directed to the authors.

References

  1. Avron, H., Toledo, S.: Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. J. ACM 58(2), Art. 8,17 (2011). https://doi.org/10.1145/1944345.1944349

  2. Cortinovis, A., Kressner, D.: On randomized trace estimates for indefinite matrices with an application to determinants. Found. Comput. Math. 22(3), 875–903 (2022). https://doi.org/10.1007/s10208-021-09525-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), Art. 1, 25 (2011). https://doi.org/10.1145/2049662.2049663

  4. Di Napoli, E., Polizzi, E., Saad, Y.: Efficient estimation of eigenvalue counts in an interval. Numer. Linear Algebra Appl. 23(4), 674–692 (2016). https://doi.org/10.1002/nla.2048

    Article  MathSciNet  MATH  Google Scholar 

  5. Futamura, Y., Sakurai, T.: z-Pares: Parallel Eigenvalue Solver (2014). https://zpares.cs.tsukuba.ac.jp/

  6. Futamura, Y., Tadano, H., Sakurai, T.: Parallel stochastic estimation method of eigenvalue distribution. JSIAM Lett. 2, 127–130 (2010). https://doi.org/10.14495/jsiaml.2.127

  7. Gavin, B., Polizzi, E.: Krylov eigenvalue strategy using the FEAST algorithm with inexact system solves. Numer. Linear Algebra Appl. 25(5), e2188 (2018). https://doi.org/10.1002/nla.2188

  8. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)

  9. Güttel, S., Polizzi, E., Tang, P.T.P., Viaud, G.: Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM J. Sci. Comput. 37(4), A2100–A2122 (2015). https://doi.org/10.1137/140980090

    Article  MathSciNet  MATH  Google Scholar 

  10. Ikegami, T., Sakurai, T.: Contour integral eigensolver for non-Hermitian systems: a Rayleigh–Ritz-type approach. Taiwan. J. Math. 14(3A), 825–837 (2010). https://doi.org/10.11650/twjm/1500405869

  11. Ikegami, T., Sakurai, T., Nagashima, U.: A filter diagonalization for generalized eigenvalue problems based on the Sakurai–Sugiura projection method. J. Comput. Appl. Math. 233(8), 1927–1936 (2010). https://doi.org/10.1016/j.cam.2009.09.029

    Article  MathSciNet  MATH  Google Scholar 

  12. Imakura, A., Du, L., Sakurai, T.: A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems. Appl. Math. Lett. 32, 22–27 (2014). https://doi.org/10.1016/j.aml.2014.02.007

    Article  MathSciNet  MATH  Google Scholar 

  13. Imakura, A., Du, L., Sakurai, T.: Relationships among contour integral-based methods for solving generalized eigenvalue problems. Jpn. J. Ind. Appl. Math. 33(3), 721–750 (2016). https://doi.org/10.1007/s13160-016-0224-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Jay, L.O., Kim, H., Saad, Y., Chelikowsky, J.R.: Electronic structure calculations for plane-wave codes without diagonalization. Comput. Phys. Commun. 118(1), 21–30 (1999). https://doi.org/10.1016/S0010-4655(98)00192-1

    Article  MATH  Google Scholar 

  15. Jia, Z.: Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm. Linear Algebra Appl. 287(1–3), 191–214 (1999). https://doi.org/10.1016/S0024-3795(98)10197-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Jia, Z., Niu, D.: An implicitly restarted refined bidiagonalization Lanczos method for computing a partial singular value decomposition. SIAM J. Matrix Anal. Appl. 25(1), 246–265 (2003). https://doi.org/10.1137/S0895479802404192

    Article  MathSciNet  MATH  Google Scholar 

  17. Jia, Z., Niu, D.: A refined harmonic Lanczos bidiagonalization method and an implicitly restarted algorithm for computing the smallest singular triplets of large matrices. SIAM J. Sci. Comput. 32(2), 714–744 (2010). https://doi.org/10.1137/080733383

    Article  MathSciNet  MATH  Google Scholar 

  18. Kestyn, J., Polizzi, E., Tang, P.T.P.: FEAST eigensolver for non-Hermitian problems. SIAM J. Sci. Comput. 38(5), S772–S799 (2016). https://doi.org/10.1137/15M1026572

    Article  MathSciNet  MATH  Google Scholar 

  19. Lehoucq, R.B., Sorensen, D., Yang, C.: ARPACK Users’ Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadephia (1998)

    Book  MATH  Google Scholar 

  20. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  21. Parlett, B.N.: The Symmetric Eigenvalue Problem, Classics in Applied Mathematics, vol. 20. SIAM, Philadelphia (1998). https://doi.org/10.1137/1.9781611971163

  22. Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79(11), e115112 (2009). https://doi.org/10.1103/PhysRevB.79.115112

  23. Polizzi, E.: FEAST eigenvalue solver v4.0 user guide (2020). https://doi.org/10.48550/arXiv.2002.04807

  24. Rivlin, T.J.: An Introduction to the Approximation of Functions. Dover Books on Advanced Mathematics. Dover, New York (1981)

  25. Robbé, M., Sadkane, M., Spence, A.: Inexact inverse subspace iteration with preconditioning applied to non-Hermitian eigenvalue problems. SIAM J. Matrix Anal. Appl. 31(1), 92–113 (2009). https://doi.org/10.1137/060673795

    Article  MathSciNet  MATH  Google Scholar 

  26. Roosta-Khorasani, F., Ascher, U.: Improved bounds on sample size for implicit matrix trace estimators. Found. Comput. Math. 15(5), 1187–1212 (2015). https://doi.org/10.1007/s10208-014-9220-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003). https://doi.org/10.1137/1.9780898718003

  28. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, Classics in Applied Mathematics, vol. 66. SIAM, Philadelphia (2011). https://doi.org/10.1137/1.9781611970739

  29. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159(1), 119–128 (2003). https://doi.org/10.1016/S0377-0427(03)00565-X

    Article  MathSciNet  MATH  Google Scholar 

  30. Sakurai, T., Tadano, H.: CIRR: a Rayleigh–Ritz type method with contour integral for generalized eigenvalue problems. Hokkaido Math. J. 36(4), 745–757 (2007). https://doi.org/10.14492/hokmj/1272848031

  31. Sorensen, D.C.: Implicit application of polynomial filters in a \(k\)-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13(1), 357–385 (1992). https://doi.org/10.1137/0613025

    Article  MathSciNet  MATH  Google Scholar 

  32. Stewart, G.W.: Matrix Algorithms, Vol. II: Eigensystems. SIAM, Philadelphia (2001). https://doi.org/10.1137/1.9780898718058

  33. Tang, P.T.P., Polizzi, E.: FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM J. Matrix Anal. Appl. 35(2), 354–390 (2014). https://doi.org/10.1137/13090866X

    Article  MathSciNet  MATH  Google Scholar 

  34. Yeung, M.C., Lee, L.: A FEAST variant incorporated with a power iteration (2019). https://doi.org/10.48550/arXiv1912.01642

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiao Jia.

Ethics declarations

Conflict of interest

The two authors declare that they have no financial interests, and they read and approved the final manuscript. The algorithmic Matlab code is available upon reasonable request from the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by the National Natural Science Foundation of China (No. 12171273).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Zhang, K. A FEAST SVDsolver Based on Chebyshev–Jackson Series for Computing Partial Singular Triplets of Large Matrices. J Sci Comput 97, 21 (2023). https://doi.org/10.1007/s10915-023-02342-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02342-y

Keywords

Mathematics Subject Classification

Navigation