Skip to main content
Log in

Thermodynamically Compatible Discretization of a Compressible Two-Fluid Model with Two Entropy Inequalities

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present two methods for the numerical solution of an overdetermined symmetric hyperbolic and thermodynamically compatible (SHTC) model of compressible two-phase flows which has the peculiar feature that it is endowed with two entropy inequalities as primary evolution equations. The total energy conservation law is an extra conservation law and is obtained via suitable linear combination of all other equations based on the Godunov variables (main field). In the stiff relaxation limit the SHTC model tends to an asymptotically reduced Baer–Nunziato-type (BN) limit system with a unique choice for the interface velocity and the interface pressure, including parabolic heat conduction terms and additional lift forces that are not present in standard BN models. Both numerical schemes directly discretize the two entropy inequalities, including the entropy production terms, and obtain total energy conservation as a consequence. The first method is of the finite volume type and makes use of a thermodynamically compatible flux recently introduced by Abgrall et al. that allows to fulfill an additional extra conservation law exactly at the discrete level. The scheme satisfies both entropy inequalities by construction and can be proven to be nonlinearly stable in the energy norm. The second scheme is a general purpose discontinuous Galerkin method that achieves thermodynamic compatibility merely via the direct solution of the underlying viscous regularization of the governing equations. We show computational results for several benchmark problems in one and two space dimensions, comparing the two methods with each other and with numerical results obtained for the asymptotically reduced BN limit system. We also investigate the influence of the lift forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data can be obtained from the authors on reasonable request.

References

  1. Abbate, E., Iollo, A., Puppo, G.: An asymptotic-preserving all-speed scheme for fluid dynamics and nonlinear elasticity. SIAM J. Sci. Comput. 41, A2850–A2879 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Abgrall, R.: A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640–666 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Abgrall, R., Busto, S., Dumbser, M.: A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics. Appl. Math. Comput. 440, 127629 (2023)

    MathSciNet  MATH  Google Scholar 

  4. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229, 2759–2763 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Abgrall, R., Nkonga, B., Saurel, R.: Efficient numerical approximation of compressible multi-material flow for unstructured meshes. Comput. Fluids 32, 571–605 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite element methods. I: Linear problems. J. Sci. Comput. 85(2), 28 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Abgrall, R., Nordström, R., Öffner, P., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite element methods. Part II: entropy stability. Commun. Appl. Math. Comput. (2021). https://doi.org/10.1007/s42967-020-00086-2

    Article  MATH  Google Scholar 

  9. Abgrall, R., Öffner, P., Ranocha, H.: Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous galerkin schemes: application to structure preserving discretization. J. Comput. Phys. 453 (2022)

  10. Abgrall, R., Saurel, R.: Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186, 361–396 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Andrianov, N., Saurel, R., Warnecke, G.: A simple method for compressible multiphase mixtures and interfaces. Int. J. Numer. Methods Fluids 41, 109–131 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Andrianov, N., Warnecke, G.: The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys. 212, 434–464 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Baer, M., Nunziato, J.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. J. Multiphase Flow 12, 861–889 (1986)

    MATH  Google Scholar 

  14. Balsara, D., Käppeli, R., Boscheri, W., Dumbser, M.: Curl constraint-preserving reconstruction and the guidance it gives for mimetic scheme design. Commun. Appl. Math. Comput. Sci. (2023). https://doi.org/10.1007/s42967-021-00160-3

    Article  MATH  Google Scholar 

  15. Boscheri, W., Dumbser, M.: Arbitrary–Lagrangian–Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. J. Comput. Phys. 346, 449–479 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Boscheri, W., Dumbser, M., Ioriatti, M., Peshkov, I., Romenski, E.: A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics. J. Comput. Phys. 424, 109866 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Busto, S., Chiocchetti, S., Dumbser, M., Gaburro, E., Peshkov, I.: High order ADER schemes for continuum mechanics. Front. Phys. 8, 32 (2020)

    Google Scholar 

  18. Busto, S., Dumbser, M.: A new class of efficient finite volume schemes for overdetermined thermodynamically compatible hyperbolic systems. Commun. Appl. Math. Comput. Sci. (2023)

  19. Busto, S., Dumbser, M.: A new thermodynamically compatible finite volume scheme for magnetohydrodynamics. SIAM J. Numer. Anal. 61, 343–364 (2023)

    MathSciNet  MATH  Google Scholar 

  20. Busto, S., Dumbser, M., Gavrilyuk, S., Ivanova, K.: On thermodynamically compatible finite volume methods and path-conservative ADER discontinuous Galerkin schemes for turbulent shallow water flows. J. Sci. Comput. 88, 28 (2021)

    MathSciNet  MATH  Google Scholar 

  21. Busto, S., Dumbser, M., Peshkov, I., Romenski, E.: On thermodynamically compatible finite volume schemes for continuum mechanics. SIAM J. Sci. Comput. 44, A1723–A1751 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Busto, S., Toro, E., Vázquez-Cendón, E.: Design and analysis of ADER-type schemes for model advection-diffusion-reaction equations. J. Comput. Phys. 327, 553–575 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Castro, M., Gallardo, J., López, J., Parés, C.: Well-balanced high order extensions of Godunov’s method for semilinear balance laws. SIAM J. Numer. Anal. 46, 1012–1039 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Castro, M., Gallardo, J., Parés, C.: High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with applications to shallow-water systemsnonconservative products. Math. Comput. 75, 1103–1134 (2006)

    MATH  Google Scholar 

  25. Castro, M., LeFloch, P., Muñoz-Ruiz, M., Parés, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227, 8107–8129 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Chertock, A., Degond, P., Neusser, J.: An asymptotic-preserving method for a relaxation of the Navier–Stokes–Korteweg equations. J. Comput. Phys. 335, 387–403 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Chiocchetti, S., Dumbser, M.: An exactly curl-free staggered semi-implicit finite volume scheme for a first order hyperbolic model of viscous flow with surface tension. J. Sci. Comput. 94, 24 (2023)

    MathSciNet  MATH  Google Scholar 

  28. Chiocchetti, S., Peshkov, I., Gavrilyuk, S., Dumbser, M.: High order ADER schemes and GLM curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension. J. Comput. Phys. 426, 109898 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230, 4028–4050 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230, 4028–4050 (2011)

    MathSciNet  MATH  Google Scholar 

  31. De Lorenzo, M., Pelanti, M., Lafon, P.: Hllc-type and path-conservative schemes for a single-velocity six-equation two-phase flow model: a comparative study. Appl. Math. Comput. 333, 95–117 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Dhaouadi, F., Dumbser, M.: A first order hyperbolic reformulation of the Navier–Stokes–Korteweg system based on the GPR model and an augmented lagrangian approach. J. Comput. Phys. 470, 111544 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Dhaouadi, F., Dumbser, M.: A structure-preserving finite volume scheme for a hyperbolic reformulation of the Navier–Stokes–Korteweg equations. Mathematics 11, 876 (2023). https://doi.org/10.3390/math11040876

    Article  Google Scholar 

  34. Diehl, D., Kremser, J., Kröner, D., Rohde, C.: Numerical solution of Navier–Stokes–Korteweg systems by Local Discontinuous Galerkin methods in multiple space dimensions. Appl. Math. Comput. 272, 309–335 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Diot, S., Clain, S., Loubère, R.: Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. J. Comput. Phys. 64, 43–63 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Dumbser, M., Balsara, D., Tavelli, M., Fambri, F.: A divergence-free semi-implicit finite volume scheme for ideal, viscous and resistive magnetohydrodynamics. Int. J. Numer. Meth. Fluids 89, 16–42 (2019)

    MathSciNet  Google Scholar 

  37. Dumbser, M., Balsara, D., Toro, E., Munz, C.: A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes. J. Comput. Phys. 227, 8209–8253 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Dumbser, M., Casulli, V.: A conservative, weakly nonlinear semi-implicit finite volume method for the compressible Navier–Stokes equations with general equation of state. Appl. Math. Comput. 272, 479–497 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Dumbser, M., Enaux, C., Toro, E.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971–4001 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Dumbser, M., Hidalgo, A., Castro, M., Parés, C., Toro, E.: FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 199, 625–647 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Dumbser, M., Loubère, R.: A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes. J. Comput. Phys. 319, 163–199 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Favrie, N., Gavrilyuk, S.: Diffuse interface model for compressible fluid: compressible elastic-plastic solid interaction. J. Comput. Phys. 231, 2695–2723 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Favrie, N., Gavrilyuk, S., Saurel, R.: Solid-fluid diffuse interface model in cases of extreme deformations. J. Comput. Phys. 228, 6037–6077 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Gassner, G., Lörcher, F., Munz, C.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224, 1049–1063 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Gavrilyuk, S., Ivanova, K., Favrie, N.: Multi-dimensional shear shallow water flows: problems and solutions. J. Comput. Phys. 366, 252–280 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Godunov, S.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139(3), 521–523 (1961)

    MathSciNet  MATH  Google Scholar 

  49. Godunov, S.: Symmetric form of the equations of magnetohydrodynamics. Numer. Methods Mech. Contin. Media 3(1), 26–31 (1972)

    Google Scholar 

  50. Godunov, S., Romenski, E.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic/Plenum Publishers (2003)

  51. Hitz, T., Keim, J., Munz, C., Rohde, C.: A parabolic relaxation model for the Navier–Stokes–Korteweg equations. J. Comput. Phys. 421, 109714 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Kapila, A., Menikoff, R., Bdzil, J., Son, S., Stewart, D.: Two-phase modelling of DDT in granular materials: reduced equations. Phys. Fluids 13, 3002–3024 (2001)

    MATH  Google Scholar 

  53. La Spina, G., de Michieli Vitturi, M., Romenski, E.: A compressible single-temperature conservative two-phase model with phase transitions. Int. J. Numer. Meth. Fluids 76(5), 282–311 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Lukáčová-Medvid’ová, M., Puppo, G., Thomann, A.: An all Mach number finite volume method for isentropic two-phase flow. J. Numer. Math. (2023). https://doi.org/10.1515/jnma-2022-0015

  55. Maso, G.D., LeFloch, P., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  56. Muñoz, M., Parés, C.: Godunov method for nonconservative hyperbolic systems. Math. Model. Numer. Anal. 41, 169–185 (2007)

    MathSciNet  MATH  Google Scholar 

  57. Ndanou, S., Favrie, N., Gavrilyuk, S.: Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation. J. Comput. Phys. 295, 523–555 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Neusser, J., Rohde, C., Schleper, V.: Relaxation of the Navier–Stokes–Korteweg equations for compressible two-phase flow with phase transition. Int. J. Numer. Meth. Fluids 79(12), 615–639 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006)

    MathSciNet  MATH  Google Scholar 

  60. Park, J., Munz, C.: Multiple pressure variables methods for fluid flow at all mach numbers. Int. J. Numer. Meth. Fluids 49, 905–931 (2005)

    MathSciNet  MATH  Google Scholar 

  61. Pelanti, M., Leveque, R.: High-resolution finite volume methods for dusty gas jets and plumes. SIAM J. Sci. Comput. 28(4), 1335–1360 (2006)

    MathSciNet  MATH  Google Scholar 

  62. Pelanti, M., Shyue, K.: A numerical model for multiphase liquid-vapor-gas flows with interfaces and cavitation. Int. J. Multiph. Flow 113, 208–230 (2019)

    MathSciNet  Google Scholar 

  63. Re, B., Abgrall, R.: A pressure-based method for weakly compressible two-phase flows under a Baer-Nunziato type model with generic equations of state and pressure and velocity disequilibrium. Int. J. Numer. Methods Fluids 94(8), 1183–1232 (2022)

    MathSciNet  Google Scholar 

  64. Romenski, E.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Modell. 28(10), 115–130 (1998)

    MathSciNet  Google Scholar 

  65. Romenski, E., Belozerov, A., Peshkov, I.: Conservative formulation for compressible multiphase flows. Q. Appl. Math. 74, 113–136 (2016)

    MathSciNet  MATH  Google Scholar 

  66. Romenski, E., Drikakis, D., Toro, E.: Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42, 68–95 (2010)

    MathSciNet  MATH  Google Scholar 

  67. Romenski, E., Resnyansky, A., Toro, E.: Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures. Q. Appl. Math. 65, 259–279 (2007)

    MathSciNet  MATH  Google Scholar 

  68. Romenski, E., Toro, E.F.: Compressible two-phase flows: Two-pressure models and numerical methods. Comput. Fluid Dyn. J 13, 403–416 (2004)

    Google Scholar 

  69. Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasilinear hyperbolic systems. Relativistic fluid dynamics. Ann. Inst. H. Poincaré Sect. A(N.S.) 34, 65–84 (1981)

  70. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150, 425–467 (1999)

    MathSciNet  MATH  Google Scholar 

  71. Scannapieco, A., Cheng, B.: A multifluid interpenetration mix model. Phys. Lett. A 299(1), 49–64 (2002)

    Google Scholar 

  72. Schmidmayer, K., Petitpas, F., Daniel, E., Favrie, N., Gavrilyuk, S.: A model and numerical method for compressible flows with capillary effects. J. Comput. Phys. 334, 468–496 (2017)

    MathSciNet  MATH  Google Scholar 

  73. Schwendeman, D., Wahle, C., Kapila, A.: The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212, 490–526 (2006)

    MathSciNet  MATH  Google Scholar 

  74. Thein, F., Romenski, E., Dumbser, M.: Exact and numerical solutions of the Riemann problem for a conservative model of compressible two-phase flows. J. Sci. Comput. 93, 83 (2022)

    MathSciNet  MATH  Google Scholar 

  75. Titarev, V., Toro, E.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17(1–4), 609–618 (2002)

    MathSciNet  MATH  Google Scholar 

  76. Titarev, V., Toro, E.: ADER schemes for three-dimensional nonlinear hyperbolic systems. J. Comput. Phys. 204, 715–736 (2005)

    MathSciNet  MATH  Google Scholar 

  77. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd edn. Springer (1999)

  78. Toro, E.F., Titarev, V.A.: Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212(1), 150–165 (2006)

    MathSciNet  MATH  Google Scholar 

  79. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids 118, 204–224 (2015)

    MathSciNet  MATH  Google Scholar 

  80. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids 118, 204–224 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M.D. is member of the INdAM GNCS group and acknowledges the financial support received from the Italian Ministry of Education, University and Research (MIUR) in the frame of the PRIN 2017 project Innovative numerical methods for evolutionary partial differential equations and applications, the PRIN 2022 project High order structure-preserving semi-implicit schemes for hyperbolic equations and via the Departments of Excellence Initiative 2018–2027 attributed to DICAM of the University of Trento (grant L. 232/2016). The authors would like to thank the Leibniz Rechenzentrum (LRZ) in Garching, Germany, for the access to SuperMUC-NG under project pr83no. A. T. has been partially supported by the Gutenberg Research College, JGU Mainz. This research was also co-funded by the European Union NextGenerationEU (PNRR, Spoke 7 CN HPC). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Thomann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Polar Coordinate Representation of the Two-fluid Model

Appendix: Polar Coordinate Representation of the Two-fluid Model

We consider a continuous solution of the homogeneous (black) part of system (3). Let the Cartesian coordinates in 2D be denoted by \(x = (x_1,x_2)\). Then we can define the polar coordinates in terms of radius r and angle \(\theta \) as

$$\begin{aligned} x_1 = r \cos (\theta ), \quad x_2 = r \sin (\theta ). \end{aligned}$$
(62)

The velocity and thermal impuls vectors are defined by

$$\begin{aligned} v_1&= v_r \cos (\theta ) - v_\theta \sin (\theta ), \quad&v_2&= v_r \cos (\theta ) + v_\theta \sin (\theta ), \end{aligned}$$
(63a)
$$\begin{aligned} w_1&= w_r \cos (\theta ) - w_\theta \sin (\theta ), \quad&w_2&= w_r \cos (\theta ) + w_\theta \sin (\theta ), \end{aligned}$$
(63b)
$$\begin{aligned} j_1^1&= j_r^1 \cos (\theta ) - j_\theta ^1 \sin (\theta ), \quad&j_2^1&= j_r^1\cos (\theta ) + j_\theta ^1 \sin (\theta ), \end{aligned}$$
(63c)
$$\begin{aligned} j_1^2&= j_r^2 \cos (\theta ) - j_\theta ^2 \sin (\theta ), \quad&j_2^2&= j_r^2\cos (\theta ) + j_\theta ^2 \sin (\theta ). \end{aligned}$$
(63d)

Using

$$\begin{aligned} \frac{\partial x_1}{\partial r} = \cos (\theta ), \quad \frac{\partial x_1}{\partial \theta } = -\frac{\sin (\theta )}{r}, \quad \frac{\partial x_2}{\partial r} = \sin (\theta ), \quad \frac{\partial x_1}{\partial \theta } = \frac{\cos (\theta )}{r}, \end{aligned}$$
(64)

we obtain the following system in polar coordinates for

$$\begin{aligned} \textbf{q}= (\alpha ^1, \alpha ^1 \rho ^1, \alpha ^2 \rho ^2, \rho v_r, \rho v_\theta ,\rho w_r, \rho w_\theta , \rho j^1_r, \rho j^1_\theta , \rho j^2_r, \rho j^2_\theta , \alpha ^1\rho ^1s^1, \alpha ^2\rho ^2s^2)^T \end{aligned}$$
(65)

as follows

$$\begin{aligned}{} & {} \frac{\partial \alpha ^1}{\partial t}+\frac{v_r}{r}\frac{\partial }{\partial r} \left( r \alpha ^1 \right) + \frac{v_\theta }{r}\frac{\partial }{\partial \theta } \alpha ^1 = 0, \end{aligned}$$
(66a)
$$\begin{aligned}{} & {} \frac{\partial (\alpha ^1\rho ^1)}{\partial t}+\frac{1}{r}\frac{\partial }{\partial r} \left( r \alpha ^1 \rho ^1 v_r^1 \right) + \frac{1}{r}\frac{\partial }{\partial \theta } \left( \alpha ^1\rho ^1 v_\theta ^1 \right) =0, \end{aligned}$$
(66b)
$$\begin{aligned}{} & {} \frac{\partial (\alpha ^2\rho ^2)}{\partial t}+\frac{1}{r}\frac{\partial }{\partial r} \left( r \alpha ^2 \rho ^2 v_r^2 \right) + \frac{1}{r}\frac{\partial }{\partial \theta } \left( \alpha ^2 \rho ^2 v_\theta ^2 \right) =0, \end{aligned}$$
(66c)
$$\begin{aligned}{} & {} \begin{aligned} \frac{\partial (\rho v_r)}{\partial t}&+\frac{1}{r}\frac{\partial }{\partial r}\left( r\left( \rho v_r^2 + \rho c^1(1-c^1) w_r w_r + p\right) \right) \\&+ \frac{1}{r}\frac{\partial }{\partial \theta }\left( \rho v_rv_\theta + \rho c^1c^2 w_r w_\theta \right) = \frac{\rho v_\theta ^2 + \rho c^1(1-c^1) w_\theta ^2 + p}{r}, \end{aligned} \end{aligned}$$
(66d)
$$\begin{aligned}{} & {} \begin{aligned} \frac{\partial (\rho v_\theta )}{\partial t}&+\frac{1}{r}\frac{\partial }{\partial r}\left( r\left( \rho v_rv_\theta + \rho c^1(1-c^1) w_r w_\theta \right) \right) \\&+ \frac{1}{r}\frac{\partial }{\partial \theta }\left( \rho v_\theta ^2 + p + \rho c^1(1-c^1) w_\theta ^2\right) = -\frac{\rho v_rv_\theta + \rho c^1c^2 w_r w_\theta }{r}, \end{aligned} \end{aligned}$$
(66e)
$$\begin{aligned}{} & {} \begin{aligned} \frac{\partial w_r}{\partial t}&+\frac{\partial }{\partial r} \left( v_rw_r + v_\theta w_\theta + (1-2c^1) \frac{w_r w_r + w_\theta w_\theta }{2} + \mu _1 - \mu _2\right) \\&+ v_\theta \left( \frac{1}{r}\frac{\partial }{\partial \theta } w_r - \frac{1}{r} \frac{\partial }{\partial r}\left( r w_\theta \right) \right) = 0, \end{aligned} \end{aligned}$$
(66f)
$$\begin{aligned}{} & {} \begin{aligned} \frac{\partial w_\theta }{\partial t}&+\frac{1}{r}\frac{\partial }{\partial \theta } \left( v_rw_r+ v_\theta w_\theta + (1-2c^1) \frac{w_rw_r+ w_\theta w_\theta }{2} + \mu _1 - \mu _2 \right) \\&+v_r\left( \frac{1}{r} \frac{\partial }{\partial r}\left( r w_\theta \right) - \frac{1}{r}\frac{\partial }{\partial \theta } w_r\right) = 0, \end{aligned} \end{aligned}$$
(66g)
$$\begin{aligned}{} & {} \frac{\partial (\rho j_r^1)}{\partial t} +\frac{1}{r}\frac{\partial }{\partial r}\left( r\left( \rho j_r^1v_r+ T^1\right) \right) + \frac{1}{r}\frac{\partial }{\partial \theta }\left( \rho j_r^1 v_\theta \right) = \frac{\rho j_\theta ^1 v_\theta + T^1}{r}, \end{aligned}$$
(66h)
$$\begin{aligned}{} & {} \frac{\partial (\rho j_\theta ^1)}{\partial t} +\frac{1}{r}\frac{\partial }{\partial r}\left( r\left( \rho j_\theta ^1v_r\right) \right) + \frac{1}{r}\frac{\partial }{\partial \theta }\left( \rho j_\theta ^1 v_\theta + T^1\right) = - \frac{\rho j_\theta ^1 v_r}{r}, \end{aligned}$$
(66i)
$$\begin{aligned}{} & {} \frac{\partial (\rho j_r^2)}{\partial t} +\frac{1}{r}\frac{\partial }{\partial r}\left( r\left( \rho j_r^2v_r+ T^2\right) \right) + \frac{1}{r}\frac{\partial }{\partial \theta }\left( \rho j_r^2 v_\theta \right) = \frac{\rho j_\theta ^2 v_\theta + T^2}{r}, \end{aligned}$$
(66j)
$$\begin{aligned}{} & {} \frac{\partial (\rho j_\theta ^2)}{\partial t} +\frac{1}{r}\frac{\partial }{\partial r}\left( r\left( \rho j_\theta ^2v_r\right) \right) + \frac{1}{r}\frac{\partial }{\partial \theta }\left( \rho j_\theta ^2 v_\theta + T^2\right) = - \frac{\rho j_\theta ^2 v_r}{r}, \end{aligned}$$
(66k)
$$\begin{aligned}{} & {} \frac{\partial (\alpha ^1\rho ^1 s^1)}{\partial t}+\frac{1}{r}\frac{\partial }{\partial r} \left( r \left( \alpha ^1 \rho ^1 s^1 v_r+ A^1 j_r^1 \right) \right) + \frac{1}{r}\frac{\partial }{\partial \theta } \left( \alpha ^1\rho ^1 s^1 v_\theta + A^1 j_\theta ^1\right) =0, \end{aligned}$$
(66l)
$$\begin{aligned}{} & {} \frac{\partial (\alpha ^2\rho ^2 s^2)}{\partial t}+\frac{1}{r}\frac{\partial }{\partial r} \left( r \left( \alpha ^2 \rho ^2 s^2 v_r+ A^2 j_r^2 \right) \right) + \frac{1}{r}\frac{\partial }{\partial \theta } \left( \alpha ^1\rho ^2 s^2 v_\theta + A^2 j_\theta ^2\right) =0. \nonumber \\ \end{aligned}$$
(66m)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomann, A., Dumbser, M. Thermodynamically Compatible Discretization of a Compressible Two-Fluid Model with Two Entropy Inequalities. J Sci Comput 97, 9 (2023). https://doi.org/10.1007/s10915-023-02321-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02321-3

Keywords

Navigation