Skip to main content
Log in

Residual a Posteriori Error Estimation for Frictional Contact with Nitsche Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider frictional contact problems in small strain elasticity discretized with finite elements and Nitsche method. Both bilateral and unilateral contact problems are taken into account, as well as both Tresca and Coulomb friction models. We derive residual a posteriori error estimates for each friction model, following (Chouly et al., in IMA J Numer Anal 38: 921–954, 2018). For the incomplete variant of Nitsche, we prove an upper bound for the dual norm of the residual, for Tresca and Coulomb friction, without any extra regularity and without a saturation assumption. We prove also local lower bounds. Numerical experiments allow to assess the accuracy of the estimates and their interest for adaptive meshing in different situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data is avalaible on FigShare, see [5].

References

  1. Abapolova, E. A., Soldatov, A. P.: The Lamé system of the theory of elasticity in a plane orthotropic medium. Sovrem. Mat. Prilozh., pp. 3–9 (2008)

  2. Adams, R.-A.: Sobolev spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York-London (1975)

  3. Ainsworth, M., Parker, C.: Unlocking the secrets of locking: finite element analysis in planar linear elasticity. Comput. Methods Appl. Mech. Eng. 395, 115034 (2022)

    MathSciNet  MATH  Google Scholar 

  4. Alart, P., Curnier, A.: A generalized Newton method for contact problems with friction. J. Mec. Theor. Appl. 7, 67–82 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Araya, R. and Chouly, F.: Residual estimator for frictional contact with Nitsche method. figshare Repository. https://doi.org/10.6084/m9.figshare.22555573.v1 (2023)

  6. Arnold, D.N., Falk, R.S.: Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials. Arch. Ration. Mech. Anal. 98, 143–165 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Ballard, P.: Steady sliding frictional contact problems in linear elasticity. J. Elast. 110, 33–61 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Ballard, P. and Iurlano, F.: Optimal existence results for the 2D elastic contact problem with Coulomb friction, arxiv: 2303.16298 (2023)

  9. Beaude, L., Chouly, F., Laaziri, M., Masson, R.: Mixed and Nitsche’s discretizations of Coulomb frictional contact-mechanics for mixed dimensional poromechanical models. Comput. Methods Appl. Mech. Eng. 413, 116124 (2023)

    MathSciNet  MATH  Google Scholar 

  10. Beaude, L., Chouly, F., Laaziri, M. and Masson, R.: Mixed and Nitsche’s discretizations of frictional contact-mechanics in fractured porous media. Lecture Notes in Computer Science. In: Proceedings of the 14th International Conference on Large-Scale Scientific Computations. To appear (2023)

  11. Becker, R., Hansbo, P., Stenberg, R.: A finite element method for domain decomposition with non-matching grids. M2AN Math. Model. Numer. Anal. 37, 209–225 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Begehr, H. and Lin, W.: A mixed-contact boundary problem in orthotropic elasticity. In: Partial differential equations with real analysis, vol. 263 of Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, pp. 219–239 (1992)

  13. Ben Belgacem, F. and Renard, Y.: Hybrid finite element methods for the Signorini problem. Math. Comp., 72: 1117–1145 (2003)

  14. Bostan, V., Han, W.: A posteriori error analysis for finite element solutions of a frictional contact problem. Comput. Methods Appl. Mech. Eng. 195, 1252–1274 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Brenner, S.-C., Scott, L.-R.: The mathematical theory of finite element methods. Texts in Applied Mathematics, vol. 15. Springer-Verlag, New York (2007)

  16. Burman, E., Hansbo, P., Larson, M.G.: Augmented Lagrangian finite element methods for contact problems. ESAIM Math. Model. Numer. Anal. 53, 173–195 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Capatina, D., Luce, R., Local flux reconstruction for a frictionless unilateral contact problem, in Numerical Mathematics and Advanced Applications–ENUMATH,: vol. 139 of Lect. Notes Comput. Sci. Eng. Springer, Cham 2021, 235–243 (2019)

  18. Chernov, M., Maischak, A., Stephan, E.: A priori error estimates for hp penalty BEM for contact problems in elasticity. Comput. Methods Appl. Mech. Eng. 196, 3871–3880 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Chouly, F.: An adaptation of Nitsche’s method to the Tresca friction problem. J. Math. Anal. Appl. 411, 329–339 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Chouly, F., Ern, A., Pignet, N.: A hybrid high-order discretization combined with Nitsche’s method for contact and Tresca friction in small strain elasticity. SIAM J. Sci. Comput. 42, A2300–A2324 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Chouly, F., Fabre, M., Hild, P., Mlika, R., Pousin, J., and Renard, Y.: An overview of recent results on Nitsche’s method for contact problems. In: Geometrically Unfitted Finite Element Methods and Applications, vol. 121 of Lecture Notes Computer Science Engineering, Springer, Cham, pp. 93–141 (2017)

  22. Chouly, F., Fabre, M., Hild, P., Pousin, J., Renard, Y.: Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method. IMA J. Numer. Anal. 38, 921–954 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Chouly, F., Hild, P.: A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51, 1295–1307 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Chouly, F., Hild, P.: On convergence of the penalty method for unilateral contact problems. Appl. Numer. Math. 65, 27–40 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Chouly, F., Hild, P., Lleras, V., Renard, Y., Nitsche-based finite element method for contact with Coulomb friction. In: Numerical Mathematics and Advanced Applications–ENUMATH,: vol. 126 of Lecture Notes Computer Science and Engineering. Springer, Cham 2019, 839–847 (2017)

  26. Chouly, F., Hild, P., Lleras, V., Renard, Y.: Nitsche method for contact with Coulomb friction: existence results for the static and dynamic finite element formulations. J. Comput. Appl. Math. 416, 114557 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Chouly, F., Hild, P., Renard, Y.: Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math. Comp. 84, 1089–1112 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Chouly, F., Hild, P., and Renard, Y.: Finite element approximation of contact and friction in elasticity. In: Advances in Continuum Mechanics, pp xxi+294. Birkhäuser, Springer (2023). https://doi.org/10.1007/978-3-031-31423-0

  29. Chouly, F., Mlika, R., Renard, Y.: An unbiased Nitsche’s approximation of the frictional contact between two elastic structures. Numer. Math. 139, 593–631 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Ciarlet, P.-G.: The finite element method for elliptic problems, vol. II of Handbook of Numerical Analysis (eds. P.G. Ciarlet and J.L. Lions), North-Holland Publishing Co., Amsterdam (1991)

  31. Deng, Y., Wang, F., Wei, H.: A posteriori error estimates of virtual element method for a simplified friction problem. J. Sci. Comput. 83, 52 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Di Pietro, D.A., Fontana, I., Kazymyrenko, K.: A posteriori error estimates via equilibrated stress reconstructions for contact problems approximated by Nitsche’s method. Comput. Math. Appl. 111, 61–80 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Duvaut, G., Lions, J.-L.: Les inéquations en mécanique et en physique. Travaux et Recherches Mathématiques, vol. 21. Dunod, Paris (1972)

  34. Eck, C., Jarusek, J.: Existence results for the static contact problem with Coulomb friction. Math. Models Meth. Appl. Sci. 8, 445–468 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Eck, C., Jarusek, J., Krbec, M.: Unilateral contact problems. Pure and Applied Mathematics, vol. 270. Chapman & Hall/CRC, Boca Raton, FL (2005)

  36. Ern, A., Guermond, J.-L.: Theory and practice of finite elements. Applied Mathematical Sciences, vol. 159. Springer-Verlag, New York (2004)

  37. Fabre, M., Pousin, J., Renard, Y.: A fictitious domain method for frictionless contact problems in elasticity using Nitsche’s method. SMAI J. Comput. Math. 2, 19–50 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Fichera, G.: Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8), 7 (1963/1964), pp. 91–140

  39. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer-Verlag, New York (1984)

  40. Glowinski, R. and Le Tallec, P.: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, vol. 9 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1989)

  41. Grieshaber, B.J., Rasolofoson, F., Reddy, B.D.: Discontinuous Galerkin approximations for near-incompressible and near-inextensible transversely isotropic bodies. Comput. Math. Appl. 79, 1914–1935 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Gustafsson, T., Stenberg, R., Videman, J.: On Nitsche’s method for elastic contact problems. SIAM J. Sci. Comput. 42, B425–B446 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Gustafsson, T., Videman, J.: Stabilized finite elements for Tresca friction problem. ESAIM Math. Model. Numer. Anal. 56, 1307–1326 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Han, W., Sofonea, M.: Quasistatic contact problems in viscoelasticity and viscoplasticity. AMS/IP Studies in Advanced Mathematics, vol. 30. American Mathematical Society, Providence, RI (2002)

  45. Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193, 3523–3540 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Hansbo, P.: Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt. 28, 183–206 (2005)

    MathSciNet  MATH  Google Scholar 

  47. Haslinger, J., Hlavácek, I.: Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. Appl. 86, 99–122 (1982)

    MathSciNet  MATH  Google Scholar 

  48. Haslinger, J., Hlavácek, I., and Necas, J.: Numerical methods for unilateral problems in solid mechanics, vol. IV of Handbook of Numerical Analysis (eds. P.G. Ciarlet and J.L. Lions), North-Holland Publishing Co., Amsterdam (1996)

  49. Heintz, P., Hansbo, P.: Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput. Methods Appl. Mech. Eng. 195, 4323–4333 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Hild, P.: Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput. Methods Appl. Mech. Eng. 184, 99–123 (2000)

    MathSciNet  MATH  Google Scholar 

  51. Hild, P.: Non unique slipping in the Coulomb friction model in two dimensional linear elasticity. Q. Jl. Mech. Appl. Math. 57, 225–235 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Hild, P., Lleras, V.: Residual error estimators for Coulomb friction. SIAM J. Numer. Anal. 47, 3550–3583 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Hild, P., Renard, Y.: An error estimate for the Signorini problem with Coulomb friction approximated by finite elements. SIAM J. Numer. Anal. 45, 2012–2031 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Hu, Q., Chouly, F., Hu, P., Cheng, G., Bordas, S.P.A.: Skew-symmetric Nitsche’s formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact. Comput. Methods Appl. Mech. Eng. 341, 188–220 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Hüeber, S., Wohlmuth, B.: Equilibration techniques for solving contact problems with Coulomb friction. Comput. Methods Appl. Mech. Eng. 205(208), 29–45 (2012)

    MathSciNet  MATH  Google Scholar 

  56. Hüeber, S., Wohlmuth, B.I.: An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43, 156–173 (2005)

    MathSciNet  MATH  Google Scholar 

  57. Kikuchi, N. and Oden, J. T.: Contact problems in elasticity: a study of variational inequalities and finite element methods, vol. 8 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988)

  58. Kikuchi, N., Song, Y.J.: Penalty-finite-element approximation of a class of unilateral problems in linear elasticity. Q. Appl. Math. 39, 1–22 (1981)

    MathSciNet  MATH  Google Scholar 

  59. Laborde, P., Renard, Y.: Fixed point strategies for elastostatic frictional contact problems. Math. Methods Appl. Sci. 31, 415–441 (2008)

    MathSciNet  MATH  Google Scholar 

  60. Laursen, T.A.: Computational Contact and Impact Mechanics. Springer-Verlag, Berlin (2002)

    MATH  Google Scholar 

  61. Lleras, V.: Modélisation, analyse et simulation de problèmes de contact en mécanique des solides et des fluides, PhD thesis, Besançon (2009)

  62. Logg, A., Mardal, K.-A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, vol. 84. Springer, Cham (2012)

    MATH  Google Scholar 

  63. Mlika, R., Renard, Y., Chouly, F.: An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput. Methods Appl. Mech. Eng. 325, 265–288 (2017)

    MathSciNet  MATH  Google Scholar 

  64. Necas, J., Jarusek, J., Haslinger, J.: On the solution of the variational inequality to the Signorini problem with small friction. Boll. Un. Mat. Ital. B 17, 796–811 (1980)

    MathSciNet  MATH  Google Scholar 

  65. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 9–15 (1971)

    MathSciNet  MATH  Google Scholar 

  66. Oden, J.T., Kikuchi, N.: Finite element methods for constrained problems in elasticity. Int. J. Numer. Meth. Eng. 18, 701–725 (1982)

    MathSciNet  MATH  Google Scholar 

  67. Oden, J.T., Kim, S.J.: Interior penalty methods for finite element approximations of the Signorini problem in elastostatics. Comput. Math. Appl. 8, 35–56 (1982)

    MathSciNet  MATH  Google Scholar 

  68. Pipping, E., Sander, O., Kornhuber, R.: Variational formulation of rate- and state-dependent friction problems. ZAMM Z. Angew. Math. Mech. 95, 377–395 (2015)

    MathSciNet  MATH  Google Scholar 

  69. Renard, Y.: Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Methods Appl. Mech. Eng. 256, 38–55 (2012)

    MathSciNet  MATH  Google Scholar 

  70. Ruhadze, V.A.: An existence theorem for the boundary-value problems of elasticity theory for piecewise non-homogeneous orthotropic bodies. Soobsc. Akad. Nauk Gruzin. SSR 30, 713–720 (1963)

    MathSciNet  Google Scholar 

  71. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    MathSciNet  MATH  Google Scholar 

  72. Seitz, A., Wall, W.A., Popp, A.: Nitsche’s method for finite deformation thermomechanical contact problems. Comput. Mech. 63, 1091–1110 (2019)

    MathSciNet  MATH  Google Scholar 

  73. Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63, 139–148 (1995)

    MathSciNet  MATH  Google Scholar 

  74. Ting, T.C.T.: Anisotropic Elasticity. Oxford Engineering Science Series, vol. 45. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  75. Verfürth, R.: A review of a posteriori error estimation techniques for elasticity problems. Comput. Methods Appl. Mech. Eng. 176, 419–440 (1999)

    MathSciNet  MATH  Google Scholar 

  76. Warburton, T., Hesthaven, J.S.: On the constants in \(hp\)-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003)

    MathSciNet  MATH  Google Scholar 

  77. Wohlmuth, B.I.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20, 569–734 (2011)

    MathSciNet  MATH  Google Scholar 

  78. Wriggers, P.: Computational Contact Mechanics. Wiley, London (2002)

    MATH  Google Scholar 

  79. Wriggers, P., Zavarise, G.: A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput. Mech. 41, 407–420 (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank to the two anonymous referees for their comments that helped to improve the presentation of the results. R.A. was partially supported by ANID-Chile through the projects: Centro de Modelamiento Matemático (FB210005) of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, and Fondecyt Regular No 1211649 F.C. work was partially supported by the I-Site BFC project NAANoD and the EIPHI Graduate School (contract ANR-17-EURE-0002). F.C. is grateful of the Center for Mathematical Modeling Grant FB20005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Chouly.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araya, R., Chouly, F. Residual a Posteriori Error Estimation for Frictional Contact with Nitsche Method. J Sci Comput 96, 87 (2023). https://doi.org/10.1007/s10915-023-02300-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02300-8

Keywords

Mathematics Subject Classification

Navigation