Skip to main content
Log in

Reformulated Dissipation for the Free-Stream Preserving of the Conservative Finite Difference Schemes on Curvilinear Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a new free-stream preserving (FP) method for high-order upwind conservative finite-difference (FD) schemes on curvilinear grids. This FP method is constructed by subtracting a reference cell-face flow state from each cell-center value in the local stencil of the original upwind schemes, which effectively leads to a reformulated dissipation. It is convenient to implement this method, as it only approximates the cell-center fluxes and conservative variables before reconstructions rather than performs the FP techniques for the central and dissipation parts individually, which avoids introducing considerable complexities to the original reconstruction procedures. In addition, the proposed method removes the constraint in the traditional FP conservative FD schemes that require a consistent scheme for the metrics discretization and the central part of fluxes discretization. With this, the proposed method is more flexible in simulating the engineering problems which usually require a low-order scheme for their low-quality mesh, while the high-order schemes can be applied to approximate the flow states to improve the resolution. After demonstrating the strict FP property and the order of accuracy by two simple test cases, we consider various validation cases, including the supersonic flow around the cylinder, the subsonic flow past the three-element airfoil, and the transonic flow around the ONERA M6 wing, etc., to show that the method is suitable for a wide range of fluid dynamic problems containing complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated in this study are available from the corresponding author on reasonable request.

References

  1. Abe, Y., Iizuka, N., Nonomura, T., Fujii, K.: Conservative metric evaluation for high-order finite difference schemes with the GCL identities on moving and deforming grids. J. Comput. Phys. 232(1), 14–21 (2013)

    Article  Google Scholar 

  2. Abe, Y., Nonomura, T., Iizuka, N., Fujii, K.: Geometric interpretations and spatial symmetry property of metrics in the conservative form for high-order finite-difference schemes on moving and deforming grids. J. Comput. Phys. 260, 163–203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, J., Tsai, H.M., Liu, F.: A parallel viscous flow solver on multi-block overset grids. Comput. Fluids 35(10), 1290–1301 (2006)

    Article  MATH  Google Scholar 

  4. Christlieb, A.J., Feng, X., Jiang, Y., Tang, Q.: A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes. SIAM J. Sci. Comput. 40(4), A2631–A2666 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deng, X., Mao, M., Tu, G., Liu, H., Zhang, H.: Geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys. 230(4), 1100–1115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, X., Min, Y., Mao, M., Liu, H., Tu, G., Zhang, H.: Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys. 239, 90–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, X., Zhang, H.: Developing high-order weighted compact nonlinear schemes. J. Comput. Phys. 165(1), 22–44 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. Am. Math. Soc. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 131(1), 3–47 (1997)

    Article  MATH  Google Scholar 

  10. Hu, X., Wang, Q., Adams, N.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229(23), 8952–8965 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In: 10th Computational Fluid Dynamics Conference (1991, AIAA 91-1596)

  12. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, Y., Shu, C.W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35(2), A1137–A1160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, Y., Shu, C.W., Zhang, M.P.: Free-stream preserving finite difference schemes on curvilinear meshes. Methods Appl. Anal. 21(1), 1–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Q., Sun, D., Liu, P.: Further study on errors in metric evaluation by linear upwind schemes with flux splitting in stationary grids. Commun. Comput. Phys. 22(01), 64–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Q., Sun, D., Xu, F.: WENO interpolation-based and upwind-biased free-stream preserving nonlinear schemes. Adv. Appl. Math. Mech. 13(6), 1441–1484 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liao, F., Ye, Z.: Extending geometric conservation law to cell-centered finite difference methods on moving and deforming grids. J. Comput. Phys. 303, 212–221 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao, F., Ye, Z., Zhang, L.: Extending geometric conservation law to cell-centered finite difference methods on stationary grids. J. Comput. Phys. 284, 419–433 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  21. Nichols, R.H., Heikkinen, B.D.: Validation of implicit algorithms for unsteady flows including moving and deforming grids. J. Aircr. 43(5), 1341–1351 (2006)

    Article  Google Scholar 

  22. Nonomura, T., Iizuka, N., Fujii, K.: Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids. Comput. Fluids 39(2), 197–214 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nonomura, T., Terakado, D., Abe, Y., Fujii, K.: A new technique for freestream preservation of finite-difference WENO on curvilinear grid. Comput. Fluids 107, 242–255 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schmitt, V., Charpin, F.: Pressure distributions on the onera M6 wing at transonic mach numbers. In: Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138 (1979)

  25. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced numerical approximation of nonlinear hyperbolic equations, pp. 325–432. Springer, Berlin (1998)

  26. Shu, C.W.: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Int. J. Comput. Fluid Dyn. 17(2), 107–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030–1037 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vinokur, M.: An analysis of finite-difference and finite-volume formulations of conservation laws. J. Comput. Phys. 81(1), 1–52 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vinokur, M., Yee, H.: Extension of efficient low dissipation high order schemes for 3-d curvilinear moving grids. In: Frontiers of Computational Fluid Dynamics 2002, pp. 129–164. World Scientific (2002)

  30. Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181(1), 155–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yoon, S., Jameson, A.: Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA J. 26(9), 1025–1026 (1988)

    Article  Google Scholar 

  33. Yu, Y., Jiang, Y., Zhang, M.: Free-stream preserving finite difference schemes for ideal magnetohydrodynamics on curvilinear meshes. J. Sci. Comput. 82(1), 1–26 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, H., Reggio, M., Trepanier, J., Camarero, R.: Discrete form of the GCL for moving meshes and its implementation in CFD schemes. Comput. Fluids 22(1), 9–23 (1993)

    Article  MATH  Google Scholar 

  35. Zhu, Y., Hu, X.: Free-stream preserving linear-upwind and WENO schemes on curvilinear grids. J. Comput. Phys. 399, 108907 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhu, Y., Sun, Z., Ren, Y., Hu, Y., Zhang, S.: A numerical strategy for freestream preservation of the high order weighted essentially non-oscillatory schemes on stationary curvilinear grids. J. Sci. Comput. 72(3), 1021–1048 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Yujie Zhu for discussion on the simulation setups.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11902271 and 91952203), the Fundamental Research Funds for the Central Universities of China (No. G2019KY05102), the National Key Project GJXM92579, the Guanghe foundation (No. ghfund202302016412) and 111 project on “Aircraft Complex Flows and the Control” (Grant No. B17037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shucheng Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The cell-face numerical fluxes \(\varvec{ \tilde{{\mathcal {F}}} }_{i+1/2}^{O}\) reconstructed by the original WENO5 scheme can be expressed by the summation of the central and dissipation part [23, 35]. Substituting Eq. [SPSeqref7eqrefSPS] into Eq. (25), and then into Eq. (20) gives

$$\begin{aligned} \begin{aligned} \varvec{ \tilde{{\mathcal {F}}} }_{i+1/2}^{O}=&{\varvec{R}}\left( \varvec{ \tilde{{\mathcal {F}}} }_{i+1/2}^{+}+\varvec{ \tilde{{\mathcal {F}}} }_{i+1/2}^{-}\right) \\ =&\dfrac{1}{60} \left( \varvec{\tilde{F}}_{i-2} -8 \varvec{\tilde{F}}_{i-1}+37 \varvec{\tilde{F}}_{i} +37\varvec{\tilde{F}}_{i+1}-8 \varvec{\tilde{F}}_{i+2}+\varvec{\tilde{F}}_{i+3} \right) \\&-\dfrac{1}{60} \sum \limits _s {\varvec{R}}^s \left[ \left( 20\omega _0^+-1 \right) {\hat{f}}_{i,1}^{s,+}-\left( 10\omega _0^+ +10\omega _1^+ -5 \right) {\hat{f}}_{i,2}^{s,+} +{\hat{f}}_{i,3}^{s,+}\right] \\&+\dfrac{1}{60} \sum \limits _s {\varvec{R}}^s \left[ \left( 20\omega _0^- -1 \right) {\hat{f}}_{i,1}^{s,-}-\left( 10\omega _0^- +10\omega _1^- -5 \right) {\hat{f}}_{i,2}^{s,-} +{\hat{f}}_{i,3}^{s,-}\right] , \end{aligned} \end{aligned}$$
(66)

where

$$\begin{aligned} \begin{aligned} {\hat{f}}_{i,r+1}^{s,+} =&{\widetilde{f}}_{i+r+1}^{s,+}-3{\widetilde{f}}_{i+r}^{s,+}+3{\widetilde{f}}_{i+r-1}^{s,+}-{\widetilde{f}}_{i+r-2}^{s,+}, \qquad r=0,1,2\\ =&\dfrac{1}{2} {\varvec{L}}^s \left( \varvec{\tilde{F}}_{i+r+1}-3\varvec{\tilde{F}}_{i+r}+3\varvec{\tilde{F}}_{i+r-1}-\varvec{\tilde{F}}_{i+r-2} \right) \\&+\dfrac{1}{2}\lambda ^s {\varvec{L}}^s\left( \varvec{\tilde{Q}}_{i+r+1}-3\varvec{\tilde{Q}}_{i+r}+3\varvec{\tilde{Q}}_{i+r-1}-\varvec{\tilde{Q}}_{i+r-2} \right) . \end{aligned} \end{aligned}$$
(67)

Similarly, the cell-face numerical fluxes \(\varvec{ \tilde{{\mathcal {F}}} }_{i+1/2}^{FP}\) obtained with the proposed FP WENO5 scheme can be given by applying the approximations suggested in Eqs. (51) and (52), i.e.

$$\begin{aligned} \begin{aligned}&\varvec{ \tilde{{\mathcal {F}}} }_{i+1/2}^{FP}={\varvec{R}}\left( \varvec{ \tilde{{\mathcal {F}}} }_{i+1/2}^{FP,+}+\varvec{ \tilde{{\mathcal {F}}} }_{i+1/2}^{FP,-}\right) \\&\quad =\dfrac{1}{60} \left( \varvec{\tilde{F}}_{i-2} -8 \varvec{\tilde{F}}_{i-1}+37 \varvec{\tilde{F}}_{i} +37\varvec{\tilde{F}}_{i+1}-8 \varvec{\tilde{F}}_{i+2}+\varvec{\tilde{F}}_{i+3} \right) +\Delta \varvec{\tilde{F}}^*\\&\qquad -\dfrac{1}{60} \sum \limits _s {\varvec{R}}_{i+1/2}^s \left[ \left( 20\omega _0^+-1 \right) {\hat{f}}_{i,1}^{s,+}-\left( 10\omega _0^+ +10\omega _1^+ -5 \right) {\hat{f}}_{i,2}^{s,+} +{\hat{f}}_{i,3}^{s,+}\right] \\&\qquad +\dfrac{1}{60} \sum \limits _s {\varvec{R}}_{i+1/2}^s \left[ \left( 20\omega _0^- -1 \right) {\hat{f}}_{i,1}^{s,-}-\left( 10\omega _0^- +10\omega _1^- -5 \right) {\hat{f}}_{i,2}^{s,-} +{\hat{f}}_{i,3}^{s,-}\right] , \end{aligned} \end{aligned}$$
(68)

where

$$\begin{aligned} \begin{aligned} {\hat{f}}_{i,r+1}^{s,+} =&{\widetilde{f}}_{i+r+1}^{s,+}-3{\widetilde{f}}_{i+r}^{s,+}+3{\widetilde{f}}_{i+r-1}^{s,+}-{\widetilde{f}}_{i+r-2}^{s,+}, \qquad r=0,1,2\\ =&\dfrac{1}{2} {\varvec{L}}_{i+1/2}^s \left( \varvec{\tilde{F}}_{i+r+1}-3\varvec{\tilde{F}}_{i+r}+3\varvec{\tilde{F}}_{i+r-1}-\varvec{\tilde{F}}_{i+r-2} \right) \\&+\dfrac{1}{2}\lambda ^s {\varvec{L}}_{i+1/2}^s\left( \varvec{\tilde{Q}}_{i+r+1}-3\varvec{\tilde{Q}}_{i+r}+3\varvec{\tilde{Q}}_{i+r-1}-\varvec{\tilde{Q}}_{i+r-2} \right) \\&-\dfrac{1}{2} {\varvec{L}}_{i+1/2}^s \left( \varvec{\tilde{F}}_{i+r+1}^{*}-3\varvec{\tilde{F}}_{i+r}^{*}+3\varvec{\tilde{F}}_{i+r-1}^{*}-\varvec{\tilde{F}}_{i+r-2}^{*} \right) \\&-\dfrac{1}{2}\lambda ^s {\varvec{L}}_{i+1/2}^s\left( \varvec{\tilde{Q}}_{i+r+1}^{*}-3\varvec{\tilde{Q}}_{i+r}^{*}+3\varvec{\tilde{Q}}_{i+r-1}^{*}-\varvec{\tilde{Q}}_{i+r-2}^{*} \right) , \end{aligned} \end{aligned}$$
(69)

and \(\Delta \varvec{\tilde{F}}^*\) is given by Eq. (60).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Cai, J., Pan, S. et al. Reformulated Dissipation for the Free-Stream Preserving of the Conservative Finite Difference Schemes on Curvilinear Grids. J Sci Comput 96, 73 (2023). https://doi.org/10.1007/s10915-023-02295-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02295-2

Keywords

Navigation