Skip to main content
Log in

Monotone Meshfree Methods for Linear Elliptic Equations in Non-divergence Form via Nonlocal Relaxation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

A Correction to this article was published on 05 October 2023

This article has been updated

Abstract

We design a monotone meshfree finite difference method for linear elliptic equations in the non-divergence form on point clouds via a nonlocal relaxation method. The key idea is a novel combination of a nonlocal integral relaxation of the PDE problem with a robust meshfree discretization on point clouds. Minimal positive stencils are obtained through a local \(l_1\)-type optimization procedure that automatically guarantees the stability and, therefore, the convergence of the meshfree discretization for linear elliptic equations. A major theoretical contribution is the existence of consistent and positive stencils for a given point cloud geometry. We provide sufficient conditions for the existence of positive stencils by finding neighbors within an ellipse (2d) or ellipsoid (3d) surrounding each interior point, generalizing the study for Poisson’s equation by Seibold (Comput Methods Appl Mech Eng 198(3–4):592–601, 2008). It is well-known that wide stencils are in general needed for constructing consistent and monotone finite difference schemes for linear elliptic equations. Our result represents a significant improvement in the stencil width estimate for positive-type finite difference methods for linear elliptic equations in the near-degenerate regime (when the ellipticity constant becomes small), compared to previously known works in this area. Numerical algorithms and practical guidance are provided with an eye on the case of small ellipticity constant. At the end, we present numerical results for the performance of our method in both 2d and 3d, examining a range of ellipticity constants including the near-degenerate regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Abdulle, A., Weinan, E.: Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys. 191(1), 18–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aksoylu, B., Gazonas, G.A.: On the choice of kernel function in nonlocal wave propagation. J. Peridyn. Nonlocal Model. 2(4), 379–400 (2020)

    Article  MathSciNet  Google Scholar 

  3. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal Diffusion Problems, vol. 165. American Mathematical Society, Providence (2010)

  4. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Beale, J.T., Majda, A.: Vortex methods. I. Convergence in three dimensions. Math. Comput. 39(159), 1–27 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Belytschko, T., Guo, Y., Kam Liu, W., Ping Xiao, S.: A unified stability analysis of meshless particle methods. Int. J. Numer. Methods Eng. 48(9), 1359–1400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MATH  Google Scholar 

  8. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications, vol. 20. Springer, New York (2016)

    MATH  Google Scholar 

  9. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  10. Cabré, X.: Elliptic pde’s in probability and geometry: symmetry and regularity of solutions. Discrete Contin. Dyn. Syst. 20(3), 425 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L.A., Gutiérrez, C.E.: Properties of the solutions of the linearized Monge–Ampere equation. Am. J. Math. 119(2), 423–465 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cottet, G.H., Koumoutsakos, P.D., et al.: Vortex Methods: Theory and Practice, vol. 8. Cambridge University Press Cambridge, Cambridge (2000)

    Book  MATH  Google Scholar 

  13. Craig, K., Bertozzi, A.: A blob method for the aggregation equation. Math. Comput. 85(300), 1681–1717 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dantzig, G.B.: Origins of the simplex method. In: A History of Scientific Computing, pp. 141–151 (1990)

  16. Davydov, O., Schaback, R.: Minimal numerical differentiation formulas. Numer. Math. 140(3), 555–592 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. D’Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X., Zhou, Z.: Numerical methods for nonlocal and fractional models. Acta Numer. 29, 1–124 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Demkowicz, L., Karafiat, A., Liszka, T.: On some convergence results for FDM with irregular mesh. Comput. Methods Appl. Mech. Eng. 42(3), 343–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Du, Q.: Nonlocal Modeling, Analysis, and Computation, vol. 94. SIAM, Philadelphia (2019)

    Book  MATH  Google Scholar 

  20. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54(4), 667–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, Q., Lehoucq, R.B., Tartakovsky, A.M.: Integral approximations to classical diffusion and smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Eng. 286, 216–229 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan, Y., You, H., Tian, X., Yang, X., Li, X., Prakash, N., Yu, Y.: A meshfree peridynamic model for brittle fracture in randomly heterogeneous materials. Comput. Methods Appl. Mech. Eng. 339, 115340 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear second order partial differential equations. SIAM Rev. 55(2), 205–267 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feng, X., Hennings, L., Neilan, M.: Finite element methods for second order linear elliptic partial differential equations in non-divergence form. Math. Comput. 86(307), 2025–2051 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feng, X., Lewis, T.: A narrow-stencil finite difference method for approximating viscosity solutions of Hamilton–Jacobi–Bellman equations. SIAM J. Numer. Anal. 59(2), 886–924 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, X., Neilan, M., Schnake, S.: Interior penalty discontinuous Galerkin methods for second order linear non-divergence form elliptic pdes. J. Sci. Comput. 74(3), 1651–1676 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Finlay, C., Oberman, A.: Improved accuracy of monotone finite difference schemes on point clouds and regular grids. SIAM J. Sci. Comput. 41(5), A3097–A3117 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, vol. 25. Springer, New York (2006)

    MATH  Google Scholar 

  29. Froese, B.D.: Meshfree finite difference approximations for functions of the eigenvalues of the Hessian. Numer. Math. 138(1), 75–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge–Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49(4), 1692–1714 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Galperin, I., Rivest, R.L.: Scapegoat trees. SODA 93, 165–174 (1993)

    MathSciNet  MATH  Google Scholar 

  32. García Trillos, N., Gerlach, M., Hein, M., Slepčev, D.: Error estimates for spectral convergence of the graph Laplacian on random geometric graphs toward the Laplace–Beltrami operator. Found. Comput. Math. 20(4), 827–887 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224. Springer, Berlin (1977)

    MATH  Google Scholar 

  34. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  MATH  Google Scholar 

  35. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, pp. 47–57 (1984)

  36. Hamfeldt, B.F., Lesniewski, J.: Convergent finite difference methods for fully nonlinear elliptic equations in three dimensions. J. Sci. Comput. 90(1), 1–36 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kocan, M.: Approximation of viscosity solutions of elliptic partial differential equations on minimal grids. Numer. Math. 72(1), 73–92 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kuo, H.J., Trudinger, N.S.: Linear elliptic difference inequalities with random coefficients. Math. Comput. 55(191), 37–53 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lakkis, O., Pryer, T.: A finite element method for second order nonvariational elliptic problems. SIAM J. Sci. Comput. 33(2), 786–801 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37(155), 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  41. Le, N.Q., Mitake, H., Tran, H.V.: Dynamical and Geometric Aspects of Hamilton–Jacobi and Linearized Monge–Ampère Equations. Springer, New York (2017)

    Book  MATH  Google Scholar 

  42. Leng, Y., Tian, X., Trask, N., Foster, J.T.: Asymptotically compatible reproducing kernel collocation and meshfree integration for nonlocal diffusion. SIAM J. Numer. Anal. 59(1), 88–118 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, Z., Shi, Z.: A convergent point integral method for isotropic elliptic equations on a point cloud. Multiscale Model. Simul. 14(2), 874–905 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liszka, T., Duarte, C., Tworzydlo, W.: Hp-meshless cloud method. Comput. Methods Appl. Mech. Eng. 139(1–4), 263–288 (1996)

    Article  MATH  Google Scholar 

  45. Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, W.K., Chen, Y., Jun, S., Chen, J., Belytschko, T., Pan, C., Uras, R., Chang, C.: Overview and applications of the reproducing kernel particle methods. Arch. Comput. Methods Eng. 3(1), 3–80 (1996)

    Article  MathSciNet  Google Scholar 

  47. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  48. Maugeri, A., Palagachev, D.K., Softova, L.: Elliptic and parabolic equations with discontinuous coefficients. Math. Res. 6, 66 (2000)

    MATH  Google Scholar 

  49. Mirebeau, J.M.: Minimal stencils for discretizations of anisotropic pdes preserving causality or the maximum principle. SIAM J. Numer. Anal. 54(3), 1582–1611 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mirzaei, D., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32(3), 983–1000 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Motzkin, T.S., Wasow, W.: On the approximation of linear elliptic differential equations by difference equations with positive coefficients. J. Math. Phys. 31(1–4), 253–259 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  52. Neilan, M., Salgado, A.J., Zhang, W.: Numerical analysis of strongly nonlinear pdes. Acta Numer. 26, 137–303 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc. 84(6), 957–1041 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  54. Nochetto, R., Ntogkas, D., Zhang, W.: Two-scale method for the Monge–Ampère equation: convergence to the viscosity solution. Math. Comput. 88(316), 637–664 (2019)

    Article  MATH  Google Scholar 

  55. Nochetto, R.H., Zhang, W.: Discrete ABP estimate and convergence rates for linear elliptic equations in non-divergence form. Found. Comput. Math. 18(3), 537–593 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Nochetto, R.H., Zhang, W.: Pointwise rates of convergence for the Oliker–Prussner method for the Monge–Ampère equation. Numer. Math. 141(1), 253–288 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge–Ampere equation and functions of the eigenvalues of the hessian. Discrete Contin. Dyn. Syst. B 10(1), 221 (2008)

    MathSciNet  MATH  Google Scholar 

  58. Safonov, M.V.: Nonuniqueness for second-order elliptic equations with measurable coefficients. SIAM J. Math. Anal. 30(4), 879–895 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  59. Seibold, B.: Minimal positive stencils in meshfree finite difference methods for the Poisson equation. Comput. Methods Appl. Mech. Eng. 198(3–4), 592–601 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Smale, S.: On the average number of steps of the simplex method of linear programming. Math. Program. 27(3), 241–262 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  61. Smears, I., Suli, E.: Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordes coefficients. SIAM J. Numer. Anal. 51(4), 2088–2106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Tian, X., Du, Q.: Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52, 1641–1665 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Tornberg, A.K., Engquist, B.: Regularization techniques for numerical approximation of PDEs with singularities. J. Sci. Comput. 19, 527–552 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  64. Trask, N., You, H., Yu, Y., Parks, M.L.: An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics. Comput. Methods Appl. Mech. Eng. 343, 151–165 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  65. Trudinger, N.S., Wang, X.J.: The Monge–Ampere equation and its geometric applications. Handb. Geom. Anal. 1, 467–524 (2008)

    MathSciNet  MATH  Google Scholar 

  66. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik Crelles J. 1908(134), 198–287 (1908)

    Article  MathSciNet  MATH  Google Scholar 

  67. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. premier mémoire. sur quelques propriétés des formes quadratiques positives parfaites. Journal für die reine und angewandte Mathematik Crelles J. 1908(133), 97–102 (1908)

    Article  MATH  Google Scholar 

  68. Van der Vorst, H.A.: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  69. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

UC San Diego Research IT Services and Academic Technology Services are acknowledged for providing the Research Cluster computing resource for the numerical simulations in this work. The authors would like to thank Qiang Du, Xiaobing Feng, Nathaniel Trask and Zhen Zhang for their helpful discussions on the subject. The authors would also like to thank the anonymous reviewers for their valuable comments and suggestions, which help to strengthen the manuscript.

Funding

This research is supported in part by NSF DMS-2111608 and NSF DMS-2240180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochuan Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Theorem 3.2

We show the proof of Theorem 3.2 in Sect. 1. We begin with some useful lemmas before proving the theorem.

Lemma A.1

Let \(r({\varvec{v}},{\varvec{x}}_i)\) denote the radius of the inscribed ball in \(T_i ({\mathcal {C}}_\delta ^{{\varvec{v}}}({\varvec{x}}_i))\) and h be the fill distance asscociated with \(X = \{ {\varvec{x}}_i\}_{i=1}^M\subset \varOmega _\delta \). If

$$\begin{aligned} h < \min _{{\varvec{v}}\in {\mathbb {R}}^d, |{\varvec{v}}|=1} r({\varvec{v}},{\varvec{x}}_i), \end{aligned}$$

then \(S_{\delta , h, 2}({\varvec{x}}_i)\) and \({\overline{S}}_{\delta , h, 2}({\varvec{x}}_i)\) are not empty.

Proof

Notice that by the definition of the fill distance in Eq. (16), there are no holes with a radius larger than h. Suppose \(S_{\delta , h, 2}({\varvec{x}}_i)\) or \({\overline{S}}_{\delta , h, 2}({\varvec{x}}_i)\) is empty, then by Corollary 3.1, there exists \({\varvec{v}}\) such that \(T_i({\mathcal {C}}^{{\varvec{v}}}_\delta ({\varvec{x}}_i))\) contains no point in \(X\backslash \{ {\varvec{x}}_i\}\). Therefore the inscribed ball in \(T_i({\mathcal {C}}^{{\varvec{v}}}_\delta ({\varvec{x}}_i))\) is a hole with radius larger than h by the assumption, which gives a contradiction. \(\square \)

From the lemma above, our goal is then to get a lower bound for \( \min _{{\varvec{v}}\in {\mathbb {R}}^d, |{\varvec{v}}|=1} r({\varvec{v}},{\varvec{x}}_i)\) for each \({\varvec{x}}_i\in \varOmega \). We first present a result in 2d which will also be useful for the 3d estimates. In 2d, we assume that \({\mathcal {C}}^{{\varvec{v}}}_\delta ({\varvec{x}}_i)\) is a cone with total opening angle \(2\phi \). In addition, without loss of generality, we fix \({\varvec{x}}_i\in \varOmega \) and assume that

$$\begin{aligned} A({\varvec{x}}_i) = \begin{pmatrix} \varrho &{} 0 \\ 0 &{} 1 \\ \end{pmatrix}. \end{aligned}$$
(A.1)

From symmetry, we only need to consider \({\varvec{v}}(\theta ) = (\cos (\theta ), \sin (\theta ))\) for \(\theta \in [0,\frac{\pi }{2}]\).

Lemma A.2

Consider \(d=2\) and \(A({\varvec{x}}_i)\) given by Eq. (A.1). Assume that \({\mathcal {C}}^{{\varvec{v}}}_\delta ({\varvec{x}}_i)\) is a cone with total opening angle \(2\phi \) for \(\phi \in (0,\frac{\pi }{8}]\), and \(r({\varvec{v}},{\varvec{x}}_i)\) denote the radius of the inscribed circle in \(T_i ({\mathcal {C}}_\delta ^{{\varvec{v}}}({\varvec{x}}_i))\). In addition, let \({\varvec{v}}(\theta ) = (\cos (\theta ), \sin (\theta ))\) for \(\theta \in [0,\frac{\pi }{2}]\). Then, there exists a constant \(K =K (\phi )>0\) such that

$$\begin{aligned} \min _{\theta \in [0, \frac{\pi }{2}]} r({\varvec{v}}(\theta ),{\varvec{x}}_i) \ge K \delta \sqrt{\varrho }. \end{aligned}$$

Proof

We try to fit a cone in \(T_i({\mathcal {C}}_\delta ^{{\varvec{v}}(\theta )}({\varvec{x}}_i))\) and then find the inscribed circle in the cone. First, notice that for a cone with a radius R and total opening angle \(\alpha \in (0,\pi )\), the radius of the inscribed circle is given by the formula

$$\begin{aligned} \frac{\sin (\alpha /2)}{1+\sin (\alpha /2)} R \ge \frac{1}{2} \sin (\alpha /2) R. \end{aligned}$$

Notice that \(\frac{1}{2} \sin (\alpha /2) R\) increases with \(\alpha \in (0,\pi )\) and R. Now for \(\theta \in [0, \frac{\pi }{2}]\), we let \(\varGamma (\theta )\) denote the opening angle of \(T_i({\mathcal {C}}_\delta ^{{\varvec{v}}(\theta )}({\varvec{x}}_i))\) and define

$$\begin{aligned} R(\theta ):= \min _{\varphi \in [\theta -\phi , \theta +\phi ]}\delta \sqrt{\varrho \cos ^2(\varphi ) + \sin ^2(\varphi )} = \min _{\varphi \in [\theta -\phi , \theta +\phi ]}\delta \sqrt{\varrho + (1-\varrho ) \sin ^2(\varphi )}, \end{aligned}$$

then it is easy to see that a cone with radius \(R(\theta )\) and total opening angle \(\varGamma (\theta )\) is contained in \(T_i({\mathcal {C}}_\delta ^{{\varvec{v}}(\theta )}({\varvec{x}}_i))\). Therefore we have

$$\begin{aligned} \min _{\theta \in [0, \frac{\pi }{2}]} r({\varvec{v}}(\theta ),{\varvec{x}}_i) \ge \min _{\theta \in [0, \frac{\pi }{2}]} \frac{1}{2} \sin (\varGamma (\theta )/2) R(\theta ). \end{aligned}$$

By calculation we have

$$\begin{aligned} \varGamma (\theta ) = \left\{ \begin{aligned} \arctan (\sqrt{\varrho ^{-1}} \tan (\theta + \phi )) - \arctan (\sqrt{\varrho ^{-1}} \tan (\theta - \phi )), \quad&\theta \in [0, \pi /2-\phi ), \\ \pi {+} \arctan (\sqrt{\varrho ^{-1}} \tan (\theta {+} \phi )) {-} \arctan (\sqrt{\varrho ^{-1}} \tan (\theta {-} \phi )), \quad&\theta \in ( \pi /2-\phi , \pi /2], \end{aligned} \right. \end{aligned}$$

and

$$\begin{aligned} R(\theta ) = \left\{ \begin{aligned}&\delta \sqrt{\varrho }, \quad&\theta \in [0, \phi ], \\&\delta \sqrt{\varrho + (1-\varrho ) \sin ^2(\theta - \phi )}, \quad&\theta \in [\phi , \pi /2]. \end{aligned} \right. \end{aligned}$$

For \(\theta \in [0, \phi ] \), \(\varGamma (\theta )\) decreases and \(R(\theta ) = \delta \sqrt{\varrho }\), so

$$\begin{aligned} \min _{\theta \in [0,\phi ]} \frac{1}{2} \sin (\varGamma (\theta )/2) R(\theta ) = \frac{1}{2} \sin (\varGamma (\phi )/2) \delta \sqrt{\varrho } \ge \frac{\sin (\phi )}{2}\delta \sqrt{\varrho } \end{aligned}$$

where we have used \(2\phi \le \varGamma (\phi )\le \pi /2\).

For \(\theta \in [\pi /2 -2\phi , \pi /2] \), \(\varGamma (\theta )\) decreases and \(R(\theta )\) increases, so

$$\begin{aligned} \begin{aligned}&\min _{\theta \in [\pi /2 -2\phi , \pi /2] } \frac{1}{2} \sin (\varGamma (\theta )/2) R(\theta )\\&\quad \ \ge \frac{1}{2} \sin (\varGamma (\pi /2)/2) R(\pi /2 -2\phi ) \ge \frac{\delta }{2}\sin (\varGamma (\pi /2)/2) \sin (\pi /8) \\&\quad \ = \frac{\sin (\pi /8) \delta }{2} \frac{\sqrt{\varrho }}{\sqrt{\varrho + \tan ^2(\pi /2-\phi )}} \ge \frac{\sin (\pi /8)}{2\sqrt{1 + \tan ^2(3\pi /8)}} \delta \sqrt{\rho }. \end{aligned} \end{aligned}$$

where we have used \(\phi \le \pi /8\) and \(\varGamma (\pi /2) = 2 \arctan (\sqrt{\varrho } \cot (\pi /2-\phi ))\).

Now for \(\theta \in [\phi , \pi /2-2\phi ]\), we use the formulas for \(\varGamma (\theta )\) and \(R(\theta )\) to compute \(\frac{1}{2} \sin (\varGamma (\theta )/2) R(\theta ) \). Denote \(\alpha = \arctan (\sqrt{\varrho ^{-1}} \tan (\theta + \phi ))\) and \(\beta = \arctan (\sqrt{\varrho ^{-1}} \tan (\theta - \phi ))\). Use the formula

$$\begin{aligned} \sin \left( \frac{\alpha -\beta }{2}\right) = \sqrt{\frac{1-\cos (\alpha -\beta )}{2}} = \sqrt{\frac{1-\cos (\alpha ) \cos (\beta ) - \sin (\alpha )\sin (\beta )}{2}}, \end{aligned}$$

and the fact that

$$\begin{aligned} \begin{aligned}&\sin (\alpha ) = \frac{\sqrt{\varrho ^{-1}} \tan (\theta + \phi )}{ \sqrt{1+\varrho ^{-1}\tan ^2(\theta +\phi )}},\; \cos (\alpha ) = \frac{1}{ \sqrt{1+\varrho ^{-1}\tan ^2(\theta +\phi )}}, \\&\sin (\beta ) = \frac{\sqrt{\varrho ^{-1}} \tan (\theta - \phi )}{ \sqrt{1+\varrho ^{-1}\tan ^2(\theta -\phi )}},\; \cos (\beta ) = \frac{1}{ \sqrt{1+\varrho ^{-1}\tan ^2(\theta -\phi )}}, \end{aligned} \end{aligned}$$

we can obtain the formula for \(\frac{1}{2} \sin (\varGamma (\theta )/2) R(\theta )\) where \(\theta \in [\phi , \pi /2-2\phi ]\). In particular, denote \(g_1(\theta ) = \tan ^2(\theta - \phi )\), \(g_2(\theta ) = \tan ^2(\theta + \phi )\), and \(g_3(\theta )= \sin ^2(\theta -\phi )\), we fine

$$\begin{aligned} \begin{aligned}&\frac{1}{2} \sin (\varGamma (\theta )/2) R(\theta ) \\&\quad =\frac{\delta }{2\sqrt{2}} \sqrt{\frac{\sqrt{(\varrho +g_1(\theta )) (\varrho +g_2(\theta )) } -\varrho - \sqrt{g_1(\theta )g_2(\theta )} }{\sqrt{(\varrho +g_1(\theta )) (\varrho +g_2(\theta )) }} \left( \varrho + (1-\varrho ) g_3(\theta ))\right) } \\&\quad = \frac{\delta \sqrt{\rho }}{2} \sqrt{\frac{ \left( (g_1(\theta ))^{1/2}-(g_2(\theta ))^{1/2}\right) ^2 \left( \varrho + (1-\varrho ) g_3(\theta ))\right) }{\sqrt{(\varrho +g_1(\theta )) (\varrho +g_2(\theta )) } \left( \sqrt{(\varrho +g_1(\theta )) (\varrho +g_2(\theta )) } +\varrho + \sqrt{g_1(\theta )g_2(\theta )}\right) }} \\&\quad =: \frac{\delta \sqrt{\rho }}{2} G(\varrho , \theta ). \end{aligned} \end{aligned}$$

Notice that \( G(\varrho , \theta )\) defined in the above is a continuous function on \((\varrho , \theta ) \in [0,1]\times [\phi , \pi /2-2\phi ]\). Therefore it attains a minimum value at some \((\varrho ^*, \theta ^*) \in [0,1]\times [\phi , \pi /2-2\phi ]\). Next we show that we must have \( G(\varrho ^*, \theta ^*)>0\). Indeed, if \(\varrho ^*>0\), then it is easy to see that \( G(\varrho ^*, \theta ^*)>0\). Now if \(\varrho ^*=0\), then

$$\begin{aligned} \begin{aligned} G(0, \theta )&= \sqrt{\frac{ \left( (g_1(\theta ))^{1/2}-(g_2(\theta ))^{1/2}\right) ^2 g_3(\theta ) }{2g_1(\theta ) g_2(\theta )}} \\&= \left( \tan (\theta + \phi ) - \tan (\theta - \phi )\right) \frac{\sin (\theta -\phi )}{2 \tan (\theta - \phi ) \tan (\theta + \phi ) } \\&= \left( \tan (\theta + \phi ) - \tan (\theta - \phi )\right) \frac{\cos (\theta -\phi )}{2 \tan (\theta + \phi ) }>0 \end{aligned} \end{aligned}$$

for any \(\theta \in [\phi , \pi /2-2\phi ]\). Therefore, we can take

$$\begin{aligned} K(\phi ) = \min \left\{ \frac{\sin (\phi )}{2},\frac{\sin (\pi /8)}{2\sqrt{1 + \tan ^2(3\pi /8)}}, G(\varrho ^*, \theta ^*)/2 \right\} >0 \end{aligned}$$

for the claim to be true. \(\square \)

Proof of Theorem 3.2

Let \(\lambda _j=\lambda _j({\varvec{x}}_i)\) denotes the jth smallest eigenvalue of \(A({\varvec{x}}_i)\). For \(d=2\), we apply Lemma A.2 with \(\phi = \pi /8\) on a rescaled ellipse of \(T_i(B_\delta ({\varvec{x}}_i))\), we get

$$\begin{aligned} \min _{\theta \in [0, \frac{\pi }{2}]} r({\varvec{v}}(\theta ),{\varvec{x}}_i) \ge C_1 \delta \sqrt{\lambda _2}\sqrt{\frac{\lambda _1}{\lambda _2}} =C_1 \delta \sqrt{\lambda _1}, \end{aligned}$$

where \(C_1 = K(\pi /8)\).

Now consider \(d=3\). First of all, we can assume without loss of generality that \(\lambda _3=1\) by the method of rescaling. By the discussions at the beginning of Sect. 3.4, \({\mathcal {C}}^{{\varvec{v}}}_\delta ({\varvec{x}}_i)\) is a 3d cone with total opening angle \(33.7^\circ \) for a given unit vector \({\varvec{v}}\in {\mathbb {R}}^3\). Let \(P_{{\varvec{v}}} \subset {\mathbb {R}}^3\) be a 2d plane that contains the vector \({\varvec{v}}\), then we see that \(P_{{\varvec{v}}} \cap B_\delta ({\varvec{x}}_i)\) is a circular domain and \(P_{{\varvec{v}}} \cap {\mathcal {C}}^{{\varvec{v}}}_\delta ({\varvec{x}}_i)\) is a 2d cone with total opening angle \(33.7^\circ \). With the transform \(T_i\), we see that \(T_i (P_{{\varvec{v}}} \cap B_\delta ({\varvec{x}}_i))\) is a 2d ellipse and \(T_i( P_{{\varvec{v}}} \cap {\mathcal {C}}^{{\varvec{v}}}_\delta ({\varvec{x}}_i))\) is a section of the ellipse. Therefore, the 2d calculations in Lemma A.2 can be applied. Notice that for each \(P_{{\varvec{v}}}\), there exists \(\rho _1\) and \(\rho _2\) with \(\lambda _1 \le \rho _1 \le \rho _2\le 1\) such that the lengths of the semi-axes of the ellipse \(T_i (P_{{\varvec{v}}} \cap B_\delta ({\varvec{x}}_i))\) are given by \(\sqrt{\rho _1}\) and \(\sqrt{\rho _2}\). We can then rescale the the ellipse \(T_i (P_{{\varvec{v}}} \cap B_\delta ({\varvec{x}}_i))\) and use Lemma A.2 with \(\phi =33.7^\circ /2\) we see that the radius of the inscribed circle in \(T_i( P_{{\varvec{v}}} \cap {\mathcal {C}}^{{\varvec{v}}}_\delta ({\varvec{x}}_i))\) has a lower bound

$$\begin{aligned} {\tilde{C}} (\delta \sqrt{\rho _2}) \sqrt{\frac{\rho _1}{\rho _2}} \ge {\tilde{C}} \delta \sqrt{\lambda _1}, \end{aligned}$$

where \({\tilde{C}} =K(33.7^\circ /2)>0\). Notice that \(P_{{\varvec{v}}}\) is an arbitrary plane that contains \({\varvec{v}}\), and in addition, the average length of the line segments that connect \(T_i({\varvec{x}}_i)\) and the edge of \(T_i( P_{{\varvec{v}}} \cap {\mathcal {C}}^{{\varvec{v}}}_\delta ({\varvec{x}}_i))\) is at the same scale for different plane \(P_{{\varvec{v}}}\). Therefore, it can be shown that there exists \(C_2>0\) such that

$$\begin{aligned} \min _{\theta \in [0, \frac{\pi }{2}]} r({\varvec{v}}(\theta ),{\varvec{x}}_i) \ge C_2 \delta \sqrt{\lambda _1}. \end{aligned}$$

At last, by Lemma A.1 and the above discussions, there exists \(C=C(d)>0\) such that whenever \(h\le C \delta \sqrt{\lambda _1({\varvec{x}}_i)} \), \(S_{\delta , h, 2}({\varvec{x}}_i)\) and \({\overline{S}}_{\delta , h, 2}({\varvec{x}}_i)\) are not empty. Therefore taking \(c(d)=1/C(d)\) the conclusion is true. By our assumption, \(\varrho \le \lambda _1({\varvec{x}}_i)\) for all \({\varvec{x}}_i\), and therefore \(\delta \ge c h (\varrho )^{-1/2}\) implies the existence of positive stencils. \(\square \)

Point Cloud Generation and Adjustment

In this appendix, we discuss the generation of proper point clouds that satisfy Definition 4.1. We first initialize a random point cloud using the Quasi-Monte Carlo method [53] (see Fig 16a), then adjust this point cloud to make it proper. Adjustment contains three steps in each loop:

Step 1. add points until h satisfies condition (i) (see Fig. 16b);

Step 2. map points until \(\kappa \) satisfies condition (iii) (see Fig. 16c);

Step 3. merge points until \(\zeta \) satisfies condition (ii) (see Fig. 16d).

Adjustment stops when the conditions in Definition 4.1 are satisfied. In practice, it usually takes a few loops to make the point cloud proper.

Fig. 16
figure 16

The process of proper point cloud generation. The grey circular domain is \(\varOmega \). The square domain is a bounding box of \(\varOmega _{\delta _0}\) for some \(\delta _0>0\). A Initialize a point cloud by the Quasi-Monte Carlo method. B Use the Voronoi diagram [66, 67] for the calculation of the fill distance, and then add the green points to the point cloud so that h satisfies condition (i). C Map points near the boundary of \(\varOmega \) to the interior so that \(\kappa \) satisfies condition (iii). D Merge points whose distances are less than \(2 c_\zeta h\) so that \(\zeta \) satisfies condition (ii). Notice that after merging of points, the fill distance may increase, as a result, the adjustment loop may be needed again

Remark B.1

Since the domain \(\varOmega _\delta \) may be irregular, in practice, we always generate point clouds on a larger bounding box of \(\varOmega _{\delta _0}\) for \(\delta \in (0,\delta _0]\), as indicated by Fig. 16a–d. The formulas for the fill distance in Eq. (16) and condition (i) Definition 4.1 are then modified accordingly. In practice, \(\delta _0\) is determined by the largest discretization parameter as well as the ratio \(\varrho \) as indicated by neighborhood estimate in Sects. 3.4 and 4.3.

Remark B.2

One can also use the Quasi-Monte Carlo method for generating the initial point cloud and perform only step 2 without the adding and merging steps. Our adjustment algorithm provides explicit control over the fill distance and the separation distance and it leads to smaller fill distances for the same number of interior points compared with point clouds without adjustment. This is a trade-off situation, namely, one can save memory by using extra time adjusting the initialized point cloud, or vice versa.

Inscribed Circle Search Algorithm

We show the details of finding the radius of the inscribed circle in \(T_{i}({\mathcal {C}}_{1}^{{\varvec{v}}}({\varvec{x}}_{i}))\) that contained in an ellipse given by \(x^{2} / \varrho + y^{2} = 1\). Let \((x_{0}, y_{0})\) be the center of the inscribed circle with radius r, then it can only sit on the angle bisector of \(T_{i}({\mathcal {C}}_{1}^{{\varvec{v}}}({\varvec{x}}_{i}))\). Let \((x_{1}, y_{1})\) and \((x_{2}, y_{2})\) represent the two corner points of \(T_{i}({\mathcal {C}}_{1}^{{\varvec{v}}}({\varvec{x}}_{i}))\). Then by some elementary calculations, there exists some \(t>0\) such that

$$\begin{aligned} (x_{0}, y_{0}) = t \left( \sqrt{x_{2}^{2} + y_{2}^{2}} x_{1} + \sqrt{x_{1}^{2} + y_{1}^{2}} x_{2}, \sqrt{x_{2}^{2} + y_{2}^{2}} y_{1} + \sqrt{x_{1}^{2} + y_{1}^{2}} y_{2} \right) \end{aligned}$$

and

$$\begin{aligned} r = t |x_{1} y_{2} - y_{1} x_{2}|. \end{aligned}$$

To determine \(t>0\), we find the closest point to the circle center on the ellipse and choose \(t>0\) such that the point is also on the circle. The closest point to the circle center on the ellipse can be found by the minimization problem

$$\begin{aligned} \min _{\theta } \Vert (\sqrt{\varrho } \cos (\theta ), \sin (\theta )) - (x_{0}, y_{0}) \Vert _{2}^{2}, \end{aligned}$$

which can be solved by, e.g., Newton’s method. At last, one may use a numerical method, e.g., the bisection method, to determine \(t>0\) such that the point is also on the circle.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Q., Tian, X. Monotone Meshfree Methods for Linear Elliptic Equations in Non-divergence Form via Nonlocal Relaxation. J Sci Comput 96, 85 (2023). https://doi.org/10.1007/s10915-023-02294-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02294-3

Keywords

Mathematics Subject Classification

Navigation