Skip to main content
Log in

A Posteriori Error Analysis of the Hybrid High-Order Method for the Stokes Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a residual-based a posteriori error estimator for the Hybrid High-Order (HHO) method for the Stokes model problem. Both the proposed HHO method and error estimator are valid in two and three dimensions and support arbitrary approximation orders on fairly general meshes. The upper bound and lower bound of the error estimator are proved, in which proof, the key ingredient is a novel stabilizer employed in the discrete scheme. By using the given estimator, adaptive algorithm of HHO method is designed to solve model problem. Finally, the expected theoretical results are numerically demonstrated on a variety of meshes for model problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Date will be made available on reasonable request.

References

  1. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50(1–3), 67–83 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12(10), 1597–1615 (1978)

    Article  MATH  Google Scholar 

  3. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142(1–2), 1–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grätsch, T., Bathe, K.-J.: A posteriori error estimation techniques in practical finite element analysis. Comput. Struct. 83(4–5), 235–265 (2005)

    Article  MathSciNet  Google Scholar 

  6. Dari, E.A., Durán, R.G., Padra, C.: A posteriori error estimates for non-conforming approximation of eigenvalue problems. Appl. Numer. Math. 62(5), 580–591 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghosh, S., Moorthy, S.: Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method. Comput. Methods Appl. Mech. Eng. 121(1), 373–409 (1995)

    Article  MATH  Google Scholar 

  8. Ghosh, S.: Micromechanical analysis and multi-scale modeling using the Voronoi cell finite element method, CRC Series in Computational Mechanics and Applied Analysis. CRC Press, Boca Raton (2011)

  9. Martin, R.B., Burr, D.B., Sharkey, N.A., Fyhrie, D.P.: Skeletal Tissue Mechanics, 2nd edn. Springer, New York (2015)

    Book  Google Scholar 

  10. Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comp. 79(271), 1303–1330 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B.: Static condensation, hybridization, and the devising of the HDG methods. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Vol. 114 of Lect. Notes Comput. Sci. Eng., pp. 129–177. Springer, Cham (2016)

  12. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Model. 12(1), 31–53 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cangiani, A., Georgoulis, E.H., Houston, P.: \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51(1), 676–693 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, L., Wang, J., Ye, X.: A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 59(2), 496–511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Beirão da Veiga, L., Manzini, G.: Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM Math. Model. Numer. Anal. 49(2), 577–599 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Pietro, D.A., Specogna, R.: An a posteriori-driven adaptive mixed high-order method with application to electrostatics. J. Comput. Phys. 326, 35–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Di Pietro, D.A., Droniou, J.: A hybrid high-order method for Leray-Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chave, F., Di Pietro, D.A., Formaggia, L.: A hybrid high-order method for Darcy flows in fractured porous media. SIAM J. Sci. Comput. 40(2), A1063–A1094 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Di Pietro, D.A., Krell, S.: A hybrid high-order method for the steady incompressible Navier–Stokes problem. J. Sci. Comput. 74(3), 1677–1705 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Y., Mei, L., Li, R.: A hybrid high-order method for a coupled Stokes–Darcy problem on general meshes. J. Comput. Phys. 403, 109064, 23 (2020)

  26. Calo, V., Cicuttin, M., Deng, Q., Ern, A.: Spectral approximation of elliptic operators by the hybrid high-order method. Math. Comput. 88(318), 1559–1586 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Abbas, M., Ern, A., Pignet, N.: A hybrid high-order method for incremental associative plasticity with small deformations. Comput. Methods Appl. Mech. Eng. 346, 891–912 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Burman, E., Cicuttin, M., Delay, G., Ern, A.: An unfitted hybrid high-order method with cell agglomeration for elliptic interface problems. SIAM J. Sci. Comput. 43(2), A859–A882 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bank, R.E., Welfert, B.D.: A posteriori error estimates for the Stokes problem. SIAM J. Numer. Anal. 28(3), 591–623 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dörfler, W., Ainsworth, M.: Reliable a posteriori error control for nonconformal finite element approximation of Stokes flow. Math. Comput. 74(252), 1599–1619 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hannukainen, A., Stenberg, R., Vohralík, M.: A unified framework for a posteriori error estimation for the Stokes problem. Numer. Math. 122(4), 725–769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bao, F., Mu, L., Wang, J.: A fully computable a posteriori error estimate for the Stokes equations on polytopal meshes. SIAM J. Numer. Anal. 57(1), 458–477 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, G., Wang, Y., He, Y.: A posteriori error estimates for the virtual element method for the Stokes problem. J. Sci. Comput. 84(2), Paper No. 37, 25 (2020)

  34. Di Pietro, D.A., Droniou, J.: The Hybrid High-Order Method for Polytopal Meshes, Vol 19 of Modeling, Simulation and Application. Springer, Berlin (2020)

    Book  Google Scholar 

  35. Dari, E., Durán, R., Padra, C.: Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comput. 64(211), 1017–1033 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zheng, X., Xie, X.: A posteriori error estimator for a weak Galerkin finite element solution of the Stokes problem. East Asian J. Appl. Math. 7(3), 508–529 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Botti, M., Di Pietro, D.A., Guglielmana, A.: A low-order nonconforming method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 354, 96–118 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. John, V.: Finite element methods for incompressible flow problems. Springer Series in Computational Mathematics, vol. 51. Springer, Cham (2016)

  39. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012)

  40. Di Pietro, D.A., Tittarelli, R.: An introduction to hybrid high-order methods. In: Numerical methods for PDEs, Vol. 15 of SEMA SIMAI Springer Ser., pp. 75–128. Springer, Cham (2018)

  41. Boffi, D., Di Pietro, D.A.: Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM Math. Model. Numer. Anal. 52(1), 1–28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Meth. Appl. Mech. Eng. 306, 175–195 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wei, H., Huang, Y.: FEALPy: Finite Element Analysis Library in Python. Tech. rep., Xiangtan University. https://github.com/weihuayi/fealpy (2017–2021)

  44. Houston, P., Schötzau, D., Wihler, T.P.: Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem. J. Sci. Comput. 22(23), 347–370 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Arndt, D., Bangerth, W., Blais, B., Clevenger, T.C., Fehling, M., Grayver, A.V., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Munch, P., Pelteret, J.-P., Rastak, R., Thomas, I., Turcksin, B., Wang, Z., Wells, D.: The deal.II library, version 9.2, J. Numer. Math

Download references

Acknowledgements

The authors should thank Huayi Wei from Xiangtan University, China, for the valuable discussions of the codes in FEALPy. The work is partially supported by the NSF of China (Nos. 12001433 and 12101495) and General Special Project of Education Department of Shaanxi Provincial Government (No. 21JK0943).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Moreover, the preview version of this paper has been uploaded to arXiv, see https://arxiv.org/abs/2103.06556 for details.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Mei, L. & Wang, G. A Posteriori Error Analysis of the Hybrid High-Order Method for the Stokes Problem. J Sci Comput 96, 74 (2023). https://doi.org/10.1007/s10915-023-02291-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02291-6

Keywords

Navigation