Skip to main content
Log in

Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit–Explicit Backward Difference Formulas up to Fifth Order for Convection–Diffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, the stability analysis and optimal error estimates are presented for a kind of fully discrete schemes for solving one-dimensional linear convection–diffusion equation with periodic boundary conditions. The fully discrete schemes are defined with local discontinuous Galerkin (LDG) spatial discretization methods coupled with implicit–explicit (IMEX) temporal discretization methods based on backward difference formulas (BDF). By combining an improved multiplier technique used in the stability analysis for multistep methods and the technique to deal with derivative and jump in LDG methods, we establish a general framework of stability analysis for the corresponding fully discrete LDG–IMEX–BDF schemes up to fifth order in time. The considered schemes are proved to be unconditionally stable, in the sense that a properly defined “discrete energy” is dissipative if the time step is upper bounded by a constant which is independent of the mesh size. Optimal orders of the \(L^2\) norm accuracy in both space and time are also proved by energy analysis. Numerical tests are presented to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no dataset was generated or analyzed during the current study.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, Canbridge (1975)

    MATH  Google Scholar 

  2. Akrivis, G.: Stability of implicit–explicit backward difference formulas for nonlinear parabolic equations. SIAM J. Numer. Anal. 53(1), 464–484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akrivis, G.: Stability properties of implicit–explicit multistep methods for a class of nonlinear parabolic equations. Math. Comput. 85(301), 2217–2229 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akrivis, G., Chen, M., Yu, F., Zhou, Z.: The energy technique for the six-step BDF method. SIAM J. Numer. Anal. 59(5), 2449–2472 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akrivis, G., Katsoprinakis, E.: Backward difference formulae: new multipliers and stability properties for parabolic equations. Math. Comput. 85(301), 2195–2216 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Akrivis, G., Lubich, C.: Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131(4), 713–735 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ascher, U., Ruuth, S., Spiteri, R.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ascher, U., Ruuth, S., Wetton, B.: Implicit explicit methods for time-dependent partial-differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calvo, M., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37(4), 535–549 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castillo, P., Cockburn, B., Schotzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71(238), 455–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

  13. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dahlquist, G.: G-stability is equivalent to A-stability. BIT Numer. Math. 18(4), 384–401 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  17. Hu, J., Shu, R.: On the uniform accuracy of implicit–explicit backward differentiation formulas (IMEX–BDF) for stiff hyperbolic relaxation systems and kinetic equations. Math. Comput. 90(328), 641–670 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225(2), 2016–2042 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kennedy, C., Carpenter, M.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koto, T.: IMEX Runge–Kutta schemes for reaction–diffusion equations. J. Comput. Appl. Math. 215(1), 182–195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lubich, C., Mansour, D., Venkataraman, C.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33(4), 1365–1385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nevanlinna, O., Odeh, F.: Multiplier techniques for linear multistep methods. Numer. Funct. Anal. Optim. 3(4), 377–423 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53(1), 206–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272(2), 237–258 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM: M2AN 50(4), 1083–1105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, H., Zhang, Q., Shu, C.-W.: Third order implicit–explicit Runge–Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection–diffusion problems with Dirichlet boundary conditions. J. Comput. Appl. Math. 342, 164–179 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Comm. Comput. Phys. 7(1), 1–46 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Q., Gao, F.: A fully-discrete local discontinuous Galerkin method for convection-dominated Sobolev equation. J. Sci. Comput. 51(1), 107–134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhao, W., Huang, J.: Boundary treatment of implicit–explicit Runge–Kutta method for hyperbolic systems with source terms. J. Comput. Phys. 423, 109828 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijin Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Haijin Wang: Research is supported by National Natural Science Foundation of China (Grant No. 12071214). Qiang Zhang: Research is supported by National Natural Science Foundation of China (Grant No. 12071214).

Appendix

Appendix

1.1 A.1: The coefficients in Lemmas 3.1 and 4.2 for \(s=1\) and \(s=2\)

For \(s=1\) and \(s=2\), the coefficients of \(\kappa _1\), \(\kappa _2\), \(\{d_i\}_{i=1}^{s-1}\) and the entries of matrix \({\mathbb {G}}\) are well known, see [16]. Specifically, for \(s=1\), we have

$$\begin{aligned}&\kappa _1 = \frac{1}{2}, \quad \kappa _2 = 1, \quad g_{11}=\frac{1}{2}, \end{aligned}$$
(A.1)

and for \(s=2\), we have

$$\begin{aligned}&\kappa _1 = \frac{1}{6}, \quad \kappa _2 = \frac{3}{2}, \quad d_1=0, \nonumber \\&g_{11}=\frac{1}{6}, \quad g_{12}=-\frac{1}{3}, \quad g_{22}=\frac{5}{6}. \end{aligned}$$
(A.2)

Obviously, \(\kappa _1>0\) and \(\kappa _2>0\). The positive-definiteness of \({\mathbb {G}}\) can be checked easily. Furthermore, in (3.2) we can simply take \(\lambda _0 = \beta \) for these two cases, thus \(A=0\) and \(\{c_i\}_{i=1}^{s}=0\).

Similarly, in (4.13) we can take \({\tilde{\lambda }}_0=\varepsilon _0=\frac{\beta }{2}\) for these two cases, so \(B=0\) and \(\{e_i\}_{i=1}^{s}=0\).

1.2 A.2: The coefficients in Lemmas 3.1 and 4.2 for \(s=3\)

For \(s=3\), \(\kappa _1\), \(\kappa _2\), \(\{d_i\}_{i=1}^2\) and the entries of matrix \({\mathbb {G}}\) are the same as that presented in [17], namely,

$$\begin{aligned}&\kappa _1 = \frac{8-\sqrt{30}}{22}, \quad \kappa _2 = \frac{11(8+\sqrt{30})}{102}, \quad d_1 = \frac{\sqrt{30}-9}{17}, \quad d_2 = \frac{2(9-\sqrt{30})}{17}, \nonumber \\&g_{11}= \frac{8+\sqrt{30}}{187}, \quad g_{12}=\frac{-3(8+\sqrt{30})}{187}, \quad g_{13}=\frac{3(8+\sqrt{30})}{187}, \nonumber \\&g_{22}=\frac{190+11\sqrt{30}}{374}, \quad g_{23}=-\frac{99+6 \sqrt{30}}{187}, \quad g_{33}=\frac{14+\sqrt{30}}{22}. \end{aligned}$$
(A.3)

Obviously, \(\kappa _1>0\) and \(\kappa _2>0\). The positive-definiteness of \({\mathbb {G}}\) can be verified by checking its eigenvalues. In fact, the eigenvalues of \({\mathbb {G}}\) are approximately equal to 0.0010644088, 0.07207072500, 1.553380287.

Taking \(\lambda _0=\frac{3}{11}\), we obtain one of the solutions for \(\{c_i\}_{i=1}^3\) and the entries of matrix \({\mathbb {A}}\), they are given as

$$\begin{aligned}&a_{11}= \frac{333-54\sqrt{30}}{3179}+ z_*, \quad a_{12}=0, \quad a_{22}=\frac{3}{11}, \nonumber \\&c_1 = \sqrt{z_*}, \quad c_2=-\frac{\sqrt{z_*}}{18}(66\sqrt{30}z_*+ 407 z_* - 18\sqrt{30}-66), \quad c_3 = 0, \end{aligned}$$
(A.4)

where \(z_*\) is one of the real root of \(10106041 z^2+(2536842-858330\sqrt{30})z -143856\sqrt{30} + 793476\). \(z_*= \frac{135 \sqrt{30}- 399 \pm 3\sqrt{-9725 + 4014\sqrt{30}}}{3179}\), which are approximately equal to 0.2115784868 and 0.0025929210, both values give positive \(a_{11}\), and thus the matrix \({\mathbb {A}}\) is positive-definite. Taking \(z_*\approx 0.0025929210\), we get the eigenvalues of \({\mathbb {A}}\) are approximately 0.0143040939 and 0.2727272727.

Further taking \({\tilde{\lambda }}_0=\frac{3}{11}\) and \(\varepsilon _0=\frac{1}{11}\), we obtain one of the solutions for \(\{e_i\}_{i=1}^3\) and the entries of matrix \({\mathbb {B}}\), they are given as

$$\begin{aligned}&b_{11}= \frac{333-54\sqrt{30}}{3179}+ {{\tilde{z}}}_*, \quad b_{12}=0, \quad b_{22}=\frac{2}{11}, \nonumber \\&e_1 = \sqrt{{\tilde{z}}_*}, \quad e_2=-\frac{\sqrt{{\tilde{z}}_*}}{18}(66\sqrt{30}{\tilde{z}}_*+ 407 {\tilde{z}}_* - 12\sqrt{30}-29), \quad e_3 = 0, \end{aligned}$$
(A.5)

where \({\tilde{z}}_*\) is one of the real root of \(10106041 z^2+(3455573-858330\sqrt{30})z -143856\sqrt{30} + 793476\). \({\tilde{z}}_*= \frac{270 \sqrt{30}- 1087 \pm \sqrt{194665 - 11556\sqrt{30}}}{6358}\), which are approximately equal to 0.1186381176 and 0.00462419918, both values give positive \(b_{11}\), and thus the matrix \({\mathbb {B}}\) is positive-definite. Taking \({\tilde{z}}_*\approx 0.00462419918\), we get the eigenvalues of \({\mathbb {B}}\) are approximately 0.01633537215 and 0.1818181818.

1.3 A.3: The coefficients in Lemmas 3.1 and 4.2 for \(s=4\)

For \(s=4\), \(\kappa _1\), \(\kappa _2\), \(\{d_i\}_{i=1}^3\) and the entries of matrix \({\mathbb {G}}\) are given as follows, in the sense that (3.1) is satisfied with tolerance error of \(10^{-31}\) for each coefficient of \(w_iw_j\).

$$\begin{aligned}&\kappa _1 = 0.094405276410813782029324113702474\\&\kappa _2 = 1.3240785340858522537272990279540\\&d_1 = 0.1788333104652450268422043512181\\&d_2 = -0.7221089245692809718953051690182\\&d_3 = 0.9077179177428268632639972843823\\&g_{11} = 0.038133461781672544907346212005075\\&g_{12} = -0.15253384712669017962938484802030\\&g_{13} = 0.22880077069003526944407727203044\\&g_{14} = -0.15253384712669017962938484802030\\&g_{22} = 0.62267472907752741152854684200519\\&g_{23} = -0.95777945055888490696888889092537\\&g_{24} = 0.65288356966196203633489381562917\\&g_{33} = 1.5247877374865469936834570807201\\&g_{34} = -1.0881655979438535337816330871974\\&g_{44} = 0.90559472358918621797067588629753 \end{aligned}$$

We observe that \(\kappa _1 >0\) and \(\kappa _2 >0\), and we can get that the eigenvalues of \({\mathbb {G}}\) are 0.00004826514323140203, 0.009410411961448486, 0.11980927324105947, 2.9619227015891934, thus \({\mathbb {G}}\) is positive-definite.

Taking \(\lambda _0=\frac{3}{25}\), we obtain one of the solutions for \(\{c_i\}_{i=1}^4\) and the entries of matrix \({\mathbb {A}}\), they are given as follows in the sense that (3.2) is satisfied with tolerance error of \(10^{-33}\) for each coefficient of \(w_iw_j\).

$$\begin{aligned}&a_{11} = 0.16874145202317428717962251016930\\&a_{12} = -0.019845053879763579080902610935712\\&a_{13} = 0.086087159363004883069812195584665\\&a_{22} = 0.23142908275626820826650337022511\\&a_{23} = -0.10025807527620447894395870706770\\&a_{33} = 0.35720726999415194238802972205615\\&c_1 = -0.40608335310788010829308087860211\\&c_2 = 0.010708634832764590606792808099215\\&c_3 = -0.16402429409974281810379030668411\\&c_4 = 0.052846286585228082721635056225196 \end{aligned}$$

The eigenvalues of \({\mathbb {A}}\) are 0.1302686625796966, 0.18757782163771705, 0.43953132055618094, hence \({\mathbb {A}}\) is also positive-definite.

Further taking \({\tilde{\lambda }}_0=\frac{3}{25}\) and \(\varepsilon _0=\frac{1}{25}\), we obtain one of the solutions for \(\{e_i\}_{i=1}^4\) and the entries of matrix \({\mathbb {B}}\), they are given as follows in the sense that (4.13) is satisfied with tolerance error of \(10^{-33}\) for each coefficient of \(w_iw_j\).

$$\begin{aligned}&b_{11} = 0.113402846160428601500976364823521\\&b_{12} = -0.0165239914218789205617197581312801\\&b_{13} = 0.0864518123315534457765888263214463\\&b_{22} = 0.175985438588842511341998542577029\\&b_{23} = -0.0958086228353943283283229290792239\\&b_{33} = 0.315796731347143965821056177851243\\&e_1 = -0.331006168837672201363045348522034\\&e_2 = 0.00310428015834393812757588168298034\\&e_3 = -0.202329124387312680846574633560170\\&e_4 = 0.0648326202837432306332337118149177 \end{aligned}$$

The eigenvalues of \({\mathbb {B}}\) are 0.07674019909822653, 0.13793872805414528, 0.39050608894404326, hence \({\mathbb {B}}\) is also positive-definite.

1.4 A.4: The coefficients in Lemmas 3.1 and 4.2 for \(s=5\)

For \(s=5\), \(\kappa _1\), \(\kappa _2\), \(\{d_i\}_{i=1}^4\) and the entries of matrix \({\mathbb {G}}\) are given as follows, in the sense that (3.1) is satisfied with tolerance error of \(10^{-31}\) for each coefficient of \(w_iw_j\).

$$\begin{aligned}&\kappa _1 = 0.350177987627029002819774458510987621\\&\kappa _2 = 0.28556906354293456730190447316720111\\&d_1= 0.18260098800206027626812585365905\\&d_2 = -0.15982188227293688184275281238302\\&d_3= 0.14757497527207844159103282503254\\&d_4 = 0.70457917584130857246451188266945\\&g_{11} = 0.0054773756127367704314926533294364326\\&g_{12} = -0.027386878063683852157463266647182164\\&g_{13} = 0.054773756127367704314926533294364326\\&g_{14} = -0.054773756127367704314926533294364326\\&g_{15} = 0.027386878063683852157463266647182164\\&g_{22} = 0.17408060178620846793179788737881\\&g_{23} = -0.37353865498682686201683189446710\\&g_{24} = 0.466114676193774767084995761543426\\&g_{25} = -0.26802596689634056560783491778750736\\&g_{33} = 0.82408941790528321166241394516586\\&g_{34} =-1.077615474265268098667330873960850\\&g_{35} = 0.6348243267981888404663634154788559\\&g_{44} = 1.5733474142189448993061626183034366\\&g_{45} = -0.98147387875975832843667618031647850\\&g_{55} = 0.649822012372970997180225541489012379 \end{aligned}$$

We can find that both \(\kappa _1\) and \(\kappa _2\) are positive, and we can compute the eigenvalues of \({\mathbb {G}}\), which are 0.000047412145709790024, 0.0011462051548831534, 0.011159345435408816, 0.1293966749328927, 3.0850671842272526, and thus \({\mathbb {G}}\) is positive-definite.

Taking \(\lambda _0 = \frac{30}{137}\), we obtain one of the solutions for \(\{c_i\}_{i=1}^5\) and the entries of matrix \({\mathbb {A}}\), they are given as follows in the sense that (3.2) is satisfied with tolerance error of \(10^{-33}\) for each coefficient of \(w_iw_j\).

$$\begin{aligned} a_{11}&\,= 0.085771374306584311437012570362731\\ a_{12}&\,= -0.010494703062067160549519221488008\\ a_{13}&\, = 0.023185001819520047340208566046117\\ a_{22}&\,= 0.091579392945648481920406469649164\\ a_{23}&\, = -0.016563449365737783316923852665598 \\ a_{33}&\,= 0.10015545428640929157576586071102\\ a_{44}&\,= 0.21897810218978102189781021897810\\ c_1&\,= -0.28012490247831085447651251497856\\ c_2&\,= 0.014651058593540641150834062133580\\ c_3&\, = -0.061701494965124979492323370346330\\ c_4&\, = 0.10057311361216397670097017415792\\ a_{14}&\,=a_{24}=a_{34}= c_5 = 0 \end{aligned}$$

The eigenvalues of \({\mathbb {A}}\) are approximately equal to 0.06856358136371647, 0.08113451794744742, 0.1278081222274782, 0.21897810218978103, so \({\mathbb {A}}\) is also positive-definite.

Further taking \({\tilde{\lambda }}_0 = \frac{30}{137}\) and \(\varepsilon _0 = \frac{3}{137}\), we obtain one of the solutions for \(\{e_i\}_{i=1}^5\) and the entries of matrix \({\mathbb {B}}\), they are given as follows in the sense that (4.13) is satisfied with tolerance error of \(10^{-33}\) for each coefficient of \(w_iw_j\).

$$\begin{aligned} b_{11}&\,= 0.052213870622550388996794908273166\\ b_{12}&\,= -0.0058547324849932415148953372950837\\ b_{13}&\, =0.024994632905722940377285214793884\\ b_{22}&\,= 0.057813628825767840389204298428498\\ b_{23}&\, = -0.010791681646560130905067278676698 \\ b_{33}&\,= 0.070699996770580707337270093683729\\ b_{44}&\,= 0.19708029197080291970802919708029\\ e_1&\,= -0.21192559379284335099513368195123\\ e_2&\,= -0.0025284544814257540875452061357753\\ e_3&\, = -0.090096509837969863986464582367497\\ e_4&\, = 0.13293832584509150884754980267739\\ b_{14}&\,=b_{24}=b_{34}= e_5 = 0 \end{aligned}$$

The eigenvalues of \({\mathbb {B}}\) are approximately equal to 0.03471657383908016, 0.05359801159997174, 0.09241291077984705, 0.19708029197080293, so \({\mathbb {B}}\) is also positive-definite.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shi, X. & Zhang, Q. Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit–Explicit Backward Difference Formulas up to Fifth Order for Convection–Diffusion Equation. J Sci Comput 96, 37 (2023). https://doi.org/10.1007/s10915-023-02264-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02264-9

Keywords

Mathematics Subject Classification

Navigation