Skip to main content
Log in

A Generalized Framework for Direct Discontinuous Galerkin Methods for Nonlinear Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this study, we propose a unified, general framework for the direct discontinuous Galerkin methods. In the new framework, the antiderivative of the nonlinear diffusion matrix is not needed. This allows a simple definition of the numerical flux, which can be used for general diffusion equations with no further modification. We also present the nonlinear stability analyses of the new direct discontinuous Galerkin methods and perform several numerical experiments to evaluate their performance. The numerical tests show that the symmetric and the interface correction versions of the method achieve optimal convergence and are superior to the nonsymmetric version, which demonstrates optimal convergence only for problems with diagonal diffusion matrices but loses order for even degree polynomials with a non-diagonal diffusion matrix. Singular or blow up solutions are also well captured with the new direct discontinuous Galerkin methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu, Hailiang, Yan, Jue: The direct discontinuous galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 675–698 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Liu, Hailiang, Yan, Jue: The direct discontinuous galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Vidden, Chad, Yan, Jue: A new direct discontinuous galerkin method with symmetric structure for nonlinear diffusion equations. J. Comput. Math. 31(6), 638–662 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Yan, Jue: A new nonsymmetric discontinuous galerkin method for time dependent convection diffusion equations. J. Sci. Comput. 54(2), 663–683 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Reed, William H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, (1973)

  6. Cockburn, Bernardo, Shu, Chi-Wang.: Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws. ii. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Cockburn, Bernardo, Lin, San-Yih., Shu, Chi-Wang.: Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws iii: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Cockburn, Bernardo, Hou, Suchung, Shu, Chi-Wang.: The runge-kutta local projection discontinuous galerkin finite element method for conservation laws. iv. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Cockburn, Bernardo, Shu, Chi-Wang.: The runge-kutta discontinuous galerkin method for conservation laws v: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E.: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697. Springer-Verlag, Berlin (1998)

    Google Scholar 

  11. Shu, C.-W.: Discontinuous Galerkin method for time-dependent problems: survey and recent developments. In Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, vol. 157 of IMA Vol. Math. Appl., pp 25–62. Springer, (2014)

  12. Zhang, Xiangxiong, Shu, Chi-Wang.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2134), 2752–2776 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Arnold, Douglas N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Analy. 19(4), 742–760 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Wheeler, Mary Fanett: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15(1), 152–161 (1978)

    MathSciNet  MATH  Google Scholar 

  15. Baker, Garth A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31(137), 45–59 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Rivière, Béatrice., Wheeler, Mary F., Girault, Vivette: Improved energy estimates for interior penalty, constrained and discontinuous galerkin methods for elliptic problems part. i. Comput. Geosci. 3(3), 337–360 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Rivière, Béatrice., Wheeler, Mary F., Girault, Vivette: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Hartmann, Ralf, Houston, Paul: Symmetric interior penalty dg methods for the compressible navier-stokes equations i: method formulation. Int. J. Numer. Anal. Model. 3(1), 1–20 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Hartmann, Ralf, Houston, Paul: Symmetric interior penalty dg methods for the compressible navier-stokes equations ii: goal-oriented a posteriori error estimation. Int. J. Numer. Anal. Model. 3(2), 141–162 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Hartmann, Ralf, Houston, Paul: An optimal order interior penalty discontinuous galerkin discretization of the compressible Navier–stokes equations. J. Comput. Phys. 227(22), 9670–9685 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Bassi, F., Rebay, S.: Gmres discontinuous galerkin solution of the compressible Navier–Stokes equations. In Discontinuous Galerkin Methods, pp 197–208. Springer, (2000)

  23. Bassi, F., Rebay, S.: A high order discontinuous galerkin method for compressible turbulent flows. In: Discontinuous Galerkin Methods, pp 77–88. Springer, (2000)

  24. Bassi, Francesco, Crivellini, Andrea, Rebay, Stefano, Savini, Marco: Discontinuous galerkin solution of the reynolds-averaged Navier–Stokes and k-\(\omega \) turbulence model equations. Comput. Fluids 34(4–5), 507–540 (2005)

    MATH  Google Scholar 

  25. Cockburn, Bernardo, Shu, Chi-Wang.: The local discontinuous galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Cockburn, Bernardo, Dawson, Clint: Approximation of the velocity by coupling discontinuous galerkin and mixed finite element methods for flow problems. Comput. Geosci. 6(3), 505–522 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Yan, Jue, Shu, Chi-Wang.: A local discontinuous galerkin method for kdv type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Baumann, Carlos Erik, Oden, J Tinsley: A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175(3–4), 311–341 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Baumann, Carlos Erik, Oden, J Tinsley: A discontinuous hp finite element method for the euler and Navier–Stokes equations. Int. J. Numer. Methods Fluids 31(1), 79–95 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Cockburn, Bernardo, Gopalakrishnan, Jayadeep, Lazarov, Raytcho: Unified hybridization of discontinuous galerkin, mixed, and continuous galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Brenner, Susanne C., Owens, Luke, Sung, Li-Yeng.: A weakly over-penalized symmetric interior penalty method. Electron. Trans. Numer. Anal. 30, 107 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Lin, Guang, Liu, Jiangguo, Sadre-Marandi, Farrah: A comparative study on the weak galerkin, discontinuous galerkin, and mixed finite element methods. J. Comput. Appl. Math. 273, 346–362 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Cheng, Yingda, Shu, Chi-Wang.: A discontinuous galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Chen, Anqi, Li, Fengyan, Cheng, Yingda: An ultra-weak discontinuous galerkin method for schrödinger equation in one dimension. J. Sci. Comput. 78(2), 772–815 (2018)

    MATH  Google Scholar 

  35. Arnold, Douglas N., Brezzi, Franco, Cockburn, Bernardo, Marini, L Donatella: Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Shu, Chi-Wang.: Discontinuous galerkin methods for time-dependent convection dominated problems: Basics, recent developments and comparison with other methods. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, pp. 371–399. Springer International Publishing, Cham (2016)

    Google Scholar 

  37. Chen, Zheng, Huang, Hongying, Yan, Jue: Third order maximum-principle-satisfying direct discontinuous galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes. J. Comput. Phys. 308, 198–217 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, M., Yan, J.: Fourier type super convergence study on DDGIC and symmetric DDG methods. J. Sci. Comput. 73(2–3), 1276–1289 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Qiu, C., Liu, Q., Yan, J.: Third order positivity-preserving direct discontinuous Galerkin method for chemotaxis keller-segel equation. J. Comput. Phys. 433, 110191 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Huang, H., Li, J., Yan, J.: High order symmetric direct discontinuous Galerkin method for elliptic interface problems with fitted mesh. J. Comput. Phys. 409, 109301 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Danis, Mustafa E.: Yan, Jue: a new direct discontinuous Galerkin method with interface correction for two-dimensional compressible Navier–Stokes equations. J. Comput. Phys. 452, 110904 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Shu, Chi-Wang., Osher, Stanley: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    MathSciNet  MATH  Google Scholar 

  43. Cockburn, Bernardo, Shu, Chi-Wang.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, Xiangxiong, Xia, Yinhua, Shu, Chi-Wang.: Maximum-principle-satisfying and positivity-preserving high order discontinuous galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50(1), 29–62 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Liu, Yuanyuan, Shu, Chi-Wang., Zhang, Mengping: High order finite difference weno schemes for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 33(2), 939–965 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Xiangxiong, Shu, Chi-Wang.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Jie, Du., Yang, Yang: Maximum-principle-preserving third-order local discontinuous galerkin method for convection-diffusion equations on overlapping meshes. J. Comput. Phys. 377, 117–141 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Guo, Li., Yang, Yang: Positivity preserving high-order local discontinuous galerkin method for parabolic equations with blow-up solutions. J. Comput. Phys. 289, 181–195 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, X.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier–Stokes equations. J. Comput. Phys. 328, 301–343 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Ern, Alexandre, Guermond, Jean-Luc.: Finite Elements I: Approximation and Interpolation, vol. 72. Springer Nature (2021)

    MATH  Google Scholar 

Download references

Funding

Research work of the author is supported by National Science Foundation grant DMS-1620335 and Simons Foundation grant 637716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jue Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Important Inequalities

A. Important Inequalities

In this section, we discuss important inequalities used in the proofs of the stability analysis for symmetric DDG and DDGIC methods.

Lemma 6

(Young’s inequality) Suppose that \(a,b \ge 0\), \(1<p,q,\infty \), and that \(\frac{1}{p} + \frac{1}{q}=1\). Then, we have that

$$\begin{aligned} ab\le \frac{a^p}{p} + \frac{b^q}{q}. \end{aligned}$$

A corollary to Lemma 6 can be obtained by considering \(ab=(a\epsilon ^{1/p})(b/\epsilon ^{1/p})\) for \(\epsilon >0\).

Corollary 7

Suppose that \(a,b \ge 0\), \(1<p,q,\infty \), and that \(\frac{1}{p} + \frac{1}{q}=1\). Furthermore, if \(\epsilon >0\), then

$$\begin{aligned} ab\le \frac{\epsilon a^p}{p} + \frac{b^q}{q\epsilon ^{q/p}}. \end{aligned}$$

We will also recall the following lemma due to Ern and Guermord [50]:

Lemma 8

Let K be an element in the mesh partition \({\mathcal {T}}_h\) of the computational domain \(\Omega \subset {\mathbb {R}}^d\), \(v\in {\mathbb {V}}_h^k\) and \(l\in {\mathbb {N}}\). There exists a constant \(C>0\) for any non-negative integer \(m \le l\) such that

$$\begin{aligned} \left| v \right| _{W^{l,p}(K)} \le Ch_K^{m-l+d\left( \frac{1}{p}-\frac{1}{r}\right) }\left| v \right| _{W^{m,r}(K)}, \quad \forall p,r\in [1,\infty ]. \end{aligned}$$

Proof

See the proof of Lemma 12.1 in [50]. \(\square \)

Next, we will derive a series of essential inequalities used in the proof of the stability results for symmetric DDG and DDGIC methods.

Lemma 9

Assume that \(A(u)\in {\mathbb {R}}^{2\times 2}\) is positive definite with positive eigenvalues and there exist \(\gamma ,\gamma ^*\in {\mathbb {R}}^{+}\) such that the eigenvalues \(({\gamma _1(u),\gamma _2(u)})\) of A(u) lie between \([\gamma ,\gamma ^*]\) for \(\forall u\in {\mathbb {R}}\). If \(\varvec{\xi }(u)\) is given as in Eq. (7), then \(\forall {\textbf{x}}\in {\mathbb {R}}^2\) there holds

$$\begin{aligned} \left| \varvec{\xi }(u)\cdot {\textbf{x}}\right| \le \gamma ^*\left\| {\textbf{x}}\right\| , \end{aligned}$$

where we denote by \(\left\| \cdot \right\| \) the Euclidean norm in \({\mathbb {R}}^2\).

Proof

Using the Scharwz inequality, we have

$$\begin{aligned} \left| \varvec{\xi }(u)\cdot {\textbf{x}}\right| \le \left\| \varvec{\xi }(u) \right\| \left\| {\textbf{x}} \right\| . \end{aligned}$$

Let \({\textbf{e}}_1,{\textbf{e}}_2\) be the orthonormal eigenvectors corresponding to the eigenvalues \(\gamma \text { and } \gamma ^*\), respectively. Since A(u) is positive-definite, its eigenvectors form a basis of \({\mathbb {R}}^2\). Then, the unit normal vector can be written as \({\textbf{n}}=n_1 {\textbf{e}}_1 + n_2 {\textbf{e}}_2\), and then, it follows that

and the conclusion holds. \(\square \)

Lemma 10

Suppose that \(A(u)\in {\mathbb {R}}^{2\times 2}\) is positive definite with positive eigenvalues and there exist \(\gamma ,\gamma ^*\in {\mathbb {R}}^{+}\) such that the eigenvalues \(({\gamma _1(u),\gamma _2(u)})\) of A(u) lie between \([\gamma ,\gamma ^*]\) for \(\forall u\in {\mathbb {R}}\). If \(\beta _0 \ge 0\), then we have that

Proof

Recall the definition of the new direction vector . Then,

Since , the conclusion follows. \(\square \)

Lemma 11

Suppose that \(A(u)\in {\mathbb {R}}^{2\times 2}\) is positive definite with positive eigenvalues and there exist \(\gamma ,\gamma ^*\in {\mathbb {R}}^{+}\) such that the eigenvalues \(({\gamma _1(u),\gamma _2(u)})\) of A(u) lie between \([\gamma ,\gamma ^*]\) for \(\forall u\in {\mathbb {V}}_h^k\). If \(\beta _0 \ge 0\), then there exists a constant \(C>0\) such that

Furthermore, under the same assumptions, there also holds

Proof

Note that . Then, we have

where we have invoked Lemma 9 in the last step. Moreover, by Corollary 7 with \(\epsilon =\frac{\gamma \beta _0}{\gamma ^*h}\), we obtain

$$\begin{aligned} \gamma ^*\int _{e} \left| \llbracket u \rrbracket \right| \, \left\| (\nabla u)^\pm \right\| ~ds \le \frac{\gamma \beta _0}{2h}\left\| \llbracket u \rrbracket \right\| ^2_{L^2(e)} + \frac{(\gamma ^*)^2h}{2\gamma \beta _0}\left\| (\nabla u)^\pm \right\| ^2_{L^2(e)}. \end{aligned}$$
(29)

So that we have

(30)

Note that the last two terms above are simply summations over individual edges in the triangulation \({\mathcal {T}}_h\), and each summation is responsible for accumulating \(\left\| (\nabla u)^\pm \right\| ^2_{L^2(e)}\) only from one side of the edge. In the global sense, these summations accumulate \(\left\| (\nabla u)^{interior} \right\| ^2_{L^2(\partial K)}\) for each cell K in the domain. Thus, they can be converted into a single summation over cells. That is,

$$\begin{aligned} \sum _{e\in {\mathcal {E}}_h} \frac{(\gamma ^*)^2h}{4\gamma \beta _0}\left\| (\nabla u)^+ \right\| ^2_{L^2(e)}+\sum _{e\in {\mathcal {E}}_h} \frac{(\gamma ^*)^2h}{4\gamma \beta _0}\left\| (\nabla u)^- \right\| ^2_{L^2(e)} = \sum _{K\in {\mathcal {T}}_h} \frac{(\gamma ^*)^2h}{4\gamma \beta _0}\left\| \nabla u \right\| ^2_{L^2(\partial K)}.\nonumber \\ \end{aligned}$$
(31)

This expression is useful since we can invoke the trace inequality

$$\begin{aligned} \sum _{K\in {\mathcal {T}}_h} \frac{(\gamma ^*)^2h}{4\gamma \beta _0}\left\| \nabla u \right\| ^2_{L^2(\partial K)} \le \sum _{K\in {\mathcal {T}}_h} C\frac{(\gamma ^*k)^2}{4\gamma \beta _0}\left\| \nabla u \right\| ^2_{L^2(K)}, \end{aligned}$$
(32)

for some constant \(C>0\). Thus, substituting Eqs. (31) and (32) into Eq. (30) completes the first part of the proof. The second part follows after following the same steps but using \(\epsilon =\frac{\gamma \beta _0}{2\gamma ^*h}\) in Eq. (29) instead. \(\square \)

Lemma 12

Suppose that \(A(u)\in {\mathbb {R}}^{2\times 2}\) is positive definite and there exist \(\gamma ,\gamma ^*\in {\mathbb {R}}^{+}\) such that the eigenvalues \(({\gamma _1(u),\gamma _2(u)})\) of A(u) lie between \([\gamma ,\gamma ^*]\) for \(\forall u\in {\mathbb {V}}_h^k\). If \(\beta _0 \ge 0\), then there exists a constant \(C>0\) such that

Proof

By convention, the outward unit normal vector \({\textbf{n}}\) is understood as \({\textbf{n}}={\textbf{n}}^+\). Also, it can be understood in terms of the inward unit normal vector as \({\textbf{n}}=-{\textbf{n}}^-\). Therefore, the jump term for the second derivatives can be rewritten as

$$\begin{aligned} \llbracket \nabla (\nabla u\cdot {\textbf{n}})\rrbracket = \left( \nabla (\nabla u\cdot {\textbf{n}})\right) ^+ + \left( \nabla (\nabla u\cdot {\textbf{n}})\right) ^-. \end{aligned}$$

With this understanding, we have that

Note that we have invoked Lemma 9 and triangle inequality in the last step. Furthermore, by Corollary 7 with \(\epsilon =\frac{\gamma \beta _0}{2\gamma ^*\beta _1h^2}\), we obtain

$$\begin{aligned} \gamma ^*\int _{e} \beta _1 h \left| \llbracket u \rrbracket \right| \left\| (\nabla (\nabla u\cdot {\textbf{n}}) )^\pm \right\| ds \le \frac{\gamma \beta _0}{4h}\left\| \llbracket u \rrbracket \right\| ^2_{L^2(e)} + \frac{(\gamma ^*\beta _1)^2h^3}{\gamma \beta _0} \left\| (\nabla (\nabla u\cdot {\textbf{n}}) )^\pm \right\| ^2_{L^2(e)}. \end{aligned}$$

Thus,

(33)

As in the proof of Lemma 11, we convert the summations over edges to a summation over cells:

$$\begin{aligned} \begin{aligned}&\sum _{e\in {\mathcal {E}}_h}\frac{(\gamma ^*\beta _1)^2h^3}{\gamma \beta _0} \left\| (\nabla (\nabla u\cdot {\textbf{n}}) )^+ \right\| ^2_{L^2(e)} + \sum _{e\in {\mathcal {E}}_h}\frac{(\gamma ^*\beta _1)^2h^3}{\gamma \beta _0} \left\| (\nabla (\nabla u\cdot {\textbf{n}}) )^- \right\| ^2_{L^2(e)} \\&\quad = \sum _{K\in {\mathcal {T}}_h} \frac{(\gamma ^*\beta _1)^2h^3}{\gamma \beta _0} \left\| \nabla (\nabla u\cdot {\textbf{n}})\right\| ^2_{L^2(\partial K)}. \end{aligned} \end{aligned}$$
(34)

At this point, it might be tempting to invoke the trace theorem for the norm on the right-hand side of the above equation. However, a more useful inequality can be obtained by considering the Euclidean norm \(\left\| \nabla (\nabla u\cdot {\textbf{n}}) \right\| ^2\). We first note that

$$\begin{aligned} \begin{aligned} \left\| \nabla (\nabla u\cdot {\textbf{n}}) \right\| ^2&=(u_{xx}n_1 + u_{yx}n_2)^2 + (u_{xy}n_1 + u_{yy}n_2)^2 \\&= (u_{xx}^2+u_{xy})^2n_1^2 + (u_{yx}^2+u_{yy})^2n_2^2 + 2n_1n_2(u_{xx}u_{yx} + u_{xy}u_{yy}). \end{aligned} \end{aligned}$$

For the cross-product term above, we invoke Lemma 6 with \(p=q=2\)

$$\begin{aligned} \begin{aligned} 2n_1n_2(u_{xx}u_{yx} + u_{xy}u_{yy})&= 2\left( (n_2u_{xx})(n_1u_{yx})+(n_2u_{xy})(n_1u_{yy})\right) \\&\le (u_{xx}^2+u_{xy})^2n_2^2 + (u_{yx}^2+u_{yy})^2n_1^2. \end{aligned} \end{aligned}$$

Since \(n_1^2+n_2^2=1\), we obtain

$$\begin{aligned} \left\| \nabla (\nabla u\cdot {\textbf{n}}) \right\| ^2 \le u_{xx}^2 + u_{xy}^2 + u_{yx}^2 + u_{yy}^2. \end{aligned}$$

Using this and the trace inequality gives

$$\begin{aligned} \begin{aligned} \left\| \nabla (\nabla u\cdot {\textbf{n}})\right\| ^2_{L^2(\partial K)}&= \int _{\partial K} \left\| \nabla (\nabla u\cdot {\textbf{n}}) \right\| ^2 ~ds \\&\le \int _{\partial K} \left( u_{xx}^2 + u_{xy}^2 + u_{yx}^2 + u_{yy}^2\right) ~ds \\&\le C \frac{k^2}{h} \int _{K} \left( u_{xx}^2 + u_{xy}^2 + u_{yx}^2 + u_{yy}^2\right) ~dxdy = C \frac{k^2}{h} \left| u \right| ^2_{H^2(K)}. \end{aligned} \end{aligned}$$

By Lemma 8 with \(d=l=p=r=2\) and \(m=1\), we have

$$\begin{aligned} \left| u \right| _{H^2(K)} \le \frac{C}{h} \left| u \right| _{H^1(K)}=\frac{C}{h} \left\| \nabla u \right\| _{L^2(K)}, \end{aligned}$$

which leads to

$$\begin{aligned} \left\| \nabla (\nabla u\cdot {\textbf{n}})\right\| ^2_{L^2(\partial K)} \le C \frac{k^2}{h^3} \left\| \nabla u \right\| ^2_{L^2(K)}. \end{aligned}$$
(35)

Finally, substituting Eqs. (34) and (35) in Eq. (33) leads to the desired result. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danis, M.E., Yan, J. A Generalized Framework for Direct Discontinuous Galerkin Methods for Nonlinear Diffusion Equations. J Sci Comput 96, 44 (2023). https://doi.org/10.1007/s10915-023-02257-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02257-8

Keywords

Mathematics Subject Classification

Navigation